Chapter 3 Differential Motions and Velocities

3.1 INTRODUCTION

- Definition of Differential Motion : A small movements of mechanism that can be used to derive velocity relationships between different parts of the mechanism.

- In this chapters

- Differential Motions of frames relative to a fixed frame
- Jacobians and robot velocity relationships

3.2 DIFFERENTIAL RELATIONSHIPS

- Concept of the differential relationships :

The velocity of point B :

$$
\bar{V}_{B}=\bar{V}_{A}+\bar{V}_{B / A}=\frac{d}{d \theta_{1}}\left(l_{1} \cos \theta_{1} \hat{i}+l_{1} \sin \theta_{1} \hat{j}\right) \frac{d \theta_{1}}{d t}+
$$

$$
\frac{d}{d\left(\theta_{1}+\theta_{2}\right)}\left(l_{2} \cos \left(\theta_{1}+\theta_{2}\right) \hat{i}+l_{2} \sin \left(\theta_{1}+\theta_{2}\right) \hat{j}\right) \frac{d\left(\theta_{1}+\theta_{2}\right)}{d t}
$$

$$
=-l_{1} \dot{\theta}_{1} \sin \theta_{1} \hat{i}+l_{1} \dot{\theta}_{1} \cos \theta_{1} \hat{j}-l_{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \sin \left(\theta_{1}+\theta_{2}\right) \hat{i}+l_{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \cos \left(\theta_{1}+\theta_{2}\right) \hat{j}
$$

(a)

(b)

Fig. 3.1 (a) A two-degree-of-freedom planar mechanism and (b) a Velocity diagram

3.2 DIFFERENTIAL RELATIONSHIPS

Velocity relationship of point B :

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{B}=l_{1} \cos \theta_{1}+l_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
y_{B}=l_{1} \sin \theta_{1}+l_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{array}\right. \\
& \left\{\begin{array}{l}
d x_{B}=-l_{1} \sin \theta_{1} d \theta_{1}-l_{2} \sin \left(\theta_{1}+\theta_{2}\right)\left(d \theta_{1}+d \theta_{2}\right) \\
d y_{B}=l_{1} \cos \theta_{1} d \theta_{1}+l_{2} \cos \left(\theta_{1}+\theta_{2}\right)\left(d \theta_{1}+d \theta_{2}\right)
\end{array}\right. \\
& \qquad\left[\begin{array}{l}
d x_{B} \\
d y_{B}
\end{array}\right]=\left[\begin{array}{cc}
-l_{1} \sin \theta_{1}-l_{2} \sin \left(\theta_{1}+\theta_{2}\right) & -l_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
l_{1} \cos \theta_{1}+l_{2} \cos \left(\theta_{1}+\theta_{2}\right) & l_{2} \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right]\left[\begin{array}{l}
d \theta_{1} \\
d \theta_{2}
\end{array}\right]
\end{aligned}
$$

Differential
Motion of B
J acobian

$$
d X=J d \Theta
$$

Differential
Motion of Joint

The joint differential motions can be related to the differential motion of the hand.

3.3 J ACOBIAN

- Definition : Jacobian is a representation of the geometry of the elements of a mechanism in time.
- Formation : J acobian is formed from the elements of the position equations that were differentiated with respect to θ_{1} and θ_{2}.
- Assumption : A set of equations Y_{i} in terms of a set of variables x_{j} :

$$
\begin{gathered}
Y_{i}=f_{i}\left(x_{1}, x_{2}, x_{3}, \mathrm{~L}, x_{j}\right) \\
\left\{\begin{array}{c}
\delta Y_{1}=\frac{\partial f_{1}}{\partial x_{1}} \delta x_{1}+\frac{\partial f_{1}}{\partial x_{2}} \delta x_{2}+\mathrm{L}+\frac{\partial f_{1}}{\partial x_{j}} \delta x_{j} \\
\delta Y_{2}=\frac{\partial f_{2}}{\partial x_{1}} \delta x_{1}+\frac{\partial f_{2}}{\partial x_{2}} \delta x_{2}+\mathrm{L}+\frac{\partial f_{2}}{\partial x_{j}} \delta x_{j} \\
\boldsymbol{M} \\
\delta Y_{i}=\frac{\partial f_{i}}{\partial x_{1}} \delta x_{1}+\frac{\partial f_{i}}{\partial x_{2}} \delta x_{2}+\mathrm{L}+\frac{\partial f_{i}}{\partial x_{j}} \delta x_{j}
\end{array}\right.
\end{gathered}
$$

3.3 J ACOBIAN

$$
\begin{aligned}
& \text { equations of a robot } \\
& {[D]=[J]\left[D_{\theta}\right]}
\end{aligned}
$$

3.4 DIFFERENTIAL MOTIONS OF A FRAME

- The differential motion of a hand frame of the robot are caused by the differential motions in each of the joints of the robot.
- The differential motion of a frame:
- Differential translations,
- Differential rotations,
- Differential transformations(translations and rotations).

Fig. 3.2 (a) Differential motions of a frame and (b) differential motions of a frame as related to the differential motions of a robot. (b) a Velocity diagram

3.4.1 Differential Translations

- Definition : A translation of a frame at differential values.
- Representation: $\operatorname{Trans}(d x, d y, d z)$
\approx The frame has moved a differential amount along the 3 axes.

3.4.2 Differential rotations

- Definition: A small rotation of a frame at differential values.
- Representation: $\operatorname{Rot}(k, d \theta), \sin \delta x=\delta x, \cos \delta x=1$
\approx The frame has rotated an angle of $d \theta$ about an axis \hat{k}
\approx Differential rotation about the x, y, z-axis is $\delta x, \delta y, \delta z$, respectively.

$$
\begin{gathered}
\operatorname{Rot}(x, \delta x)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -\delta x & 0 \\
0 & \delta x & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \operatorname{Rot}(y, \delta y)=\left[\begin{array}{cccc}
1 & 0 & -\delta y & 0 \\
0 & 1 & 0 & 0 \\
\delta y & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \operatorname{Rot}(z, \delta z)=\left[\begin{array}{cccc}
1 & -\delta z & 0 & 0 \\
\delta z & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\operatorname{Rot}(x, \delta x) \operatorname{Rot}(y, \delta y)=\operatorname{Rot}(y, \delta y) \operatorname{Rot}(x, \delta x)
\end{gathered}
$$

Pusan National University

School of Mechanical Engineering

$$
\begin{aligned}
& \operatorname{Rot}(x, \delta x) \operatorname{Rot}(y, \delta y)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -\delta x & 0 \\
0 & \delta x & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & \delta y & 0 \\
0 & 1 & 0 & 0 \\
-\delta y & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & \delta y & 0 \\
\delta x \delta y & 1 & -\delta x & 0 \\
-\delta y & \delta x & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \operatorname{Rot}(y, \delta y) \operatorname{Rot}(x, \delta x)=\left[\begin{array}{ccccc}
1 & 0 & \delta y & 0 \\
0 & 1 & 0 & 0 \\
-\delta y & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -\delta x & 0 \\
0 & \delta x & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & \delta x \delta y & \delta y & 0 \\
0 & 1 & -\delta x & 0 \\
-\delta y & \delta x & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$\sin \delta x=\delta x, \cos \delta x=1, \delta x \delta y \approx 0$ 로 둘 수 있으므로
$\operatorname{Rot}(x, \delta x) \operatorname{Rot}(y, \delta y)=\operatorname{Rot}(y, \delta y) \operatorname{Rot}(x, \delta x)$

3.4.3 Differential Rotation about a General Axis $\hat{\boldsymbol{k}}$

- A differential motion about a general axis $\hat{\boldsymbol{k}}$ is composed of 3 differential motions about the 3 axes, in any order.
$\operatorname{Rot}(k, d \theta)=\operatorname{Rot}(x, \delta x) \operatorname{Rot}(y, \delta y) \operatorname{Rot}(z, \delta z)$

$$
\begin{aligned}
& =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -\delta x & 0 \\
0 & \delta x & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & -\delta y & 0 \\
0 & 1 & 0 & 0 \\
\delta y & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & -\delta z & 0 & 0 \\
\delta z & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & -\delta z & \delta y & 0 \\
\delta x \delta y+\delta z & -\delta x \delta y \delta z+1 & -\delta x & 0 \\
-\delta y+\delta x \delta z & \delta x+\delta y \delta z & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & -\delta z & \delta y & 0 \\
\delta z & 1 & -\delta x & 0 \\
-\delta y & \delta x & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned} \begin{gathered}
\substack{\text { Neglect the higher } \\
\text { order differential motion } \\
(\delta x \delta y,-\delta x \delta y \delta z, \delta x \delta z, \delta y \delta z)}
\end{gathered}
$$

3.4.4 Differential Transformations of a Frame

- Definition: A combination of differential translations and rotations.

$$
\begin{aligned}
& {[T+d T]=[\operatorname{Trans}(d x, d y, d z) \times \operatorname{Rot}(k, d \theta)][T]} \\
& {[d T]=[\operatorname{Trans}(d x, d y, d z) \times \operatorname{Rot}(k, d \theta)-I][T]} \\
& {[d T]=[\Delta][T]}
\end{aligned}
$$

- Δ : Differential Operator

$$
\Delta=\operatorname{Trans}(d x, d y, d z) \times \operatorname{Rot}(k, d \theta)-I
$$

$$
=\left[\begin{array}{cccc}
1 & 0 & 0 & d x \\
0 & 1 & 0 & d y \\
0 & 0 & 1 & d z \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & -\delta z & \delta y & 0 \\
\delta z & 1 & -\delta x & 0 \\
-\delta y & \delta x & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]-\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
0 & -\delta z & \delta y & d x \\
\delta z & 0 & -\delta x & d y \\
-\delta y & \delta x & 0 & d z \\
0 & 0 & 0 & 0
\end{array}\right]
$$

3.5 INTERPRETATION OF THE DIFFERENTIAL CHANGE

- Matrix $d T$ represents the changes in a frame as a result of differential motions.
- Each element of the matrix represents the change in the corresponding element of the frame.

$$
d T=\left[\begin{array}{cccc}
d n_{x} & d o_{x} & d a_{x} & d p_{x} \\
d n_{y} & d o_{y} & d a_{y} & d p_{y} \\
d n_{z} & d o_{z} & d a_{z} & d p_{z} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

3.6 DIFFERENTIAL CHANGES BETWEEN FRAMES

$$
\begin{aligned}
& {[d T]=[\Delta][T]=[T]\left[{ }^{T} \Delta\right] } \\
& \text { Fixed Frame } \text { Current Frame }
\end{aligned} \longrightarrow \begin{aligned}
& {[T]^{-1}[\Delta][T]=[T]^{-1}[T]\left[^{T} \Delta\right]} \\
& {[T]=[T]^{-1}[\Delta][T]}
\end{aligned}
$$

$$
\begin{aligned}
T^{-1}= & {\left[\begin{array}{cccc}
n_{x} & n_{y} & n_{z} & -p \cdot n \\
o_{x} & o_{y} & o_{z} & -p \cdot o \\
a_{x} & a_{y} & a_{z} & -p \cdot a \\
0 & 0 & 0 & 1
\end{array}\right] \quad \Delta=\left[\begin{array}{cccc}
0 & -\delta z & \delta y & d x \\
\delta z & 0 & -\delta x & d y \\
-\delta y & \delta x & 0 & d z \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{cccc}
0 & -{ }^{T} \delta z & { }^{T} \delta y & { }^{T} d x \\
{ }^{T} \delta z & 0 & -{ }^{T} \delta x & { }^{T} d y \\
-{ }^{T} \delta y & { }^{T} \delta x & 0 & { }^{T} d z \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left\{\begin{array}{l}
{ }^{T} \delta_{x}=\bar{\delta} \cdot \bar{n} \\
{ }^{T} \delta_{y}=\bar{\delta} \cdot \bar{o} \\
{ }^{T} \delta_{z}=\bar{\delta} \cdot \bar{a} \\
{ }^{T} d_{x}=\bar{n} \cdot[(\bar{\delta} \cdot \bar{p})+\bar{d}] \\
{ }^{T} d_{y}=\bar{o} \cdot[(\bar{\delta} \cdot \bar{p})+\bar{d}] \\
{ }^{T} d_{z}=\bar{a} \cdot[(\bar{\delta} \cdot \bar{p})+\bar{d}]
\end{array}\right.}
\end{aligned}
$$

3.7 DIFFERENTIAL MOTIONS OF A ROBOT AND ITS HAND FRAME

- Relation between the differential motions of the joint of the robot and the differential motions of the hand frame and $d T$.
- It is a function of the robot's configuration and design and its instantaneous location and orientation.

$$
\left[\begin{array}{l}
d x \\
d y \\
d z \\
\partial x \\
\partial y \\
\partial z
\end{array}\right]=\left[\begin{array}{c}
\text { Robot } \\
\text { Jacobian }
\end{array}\right]\left[\begin{array}{l}
d \theta_{1} \\
d \theta_{2} \\
d \theta_{3} \\
d \theta_{4} \\
d \theta_{5} \\
d \theta_{6}
\end{array}\right] \quad \text { OR }[D]=[J]\left[D_{\theta}\right]
$$

3.8 CALCULATION OF THE J ACOBIAN

- Key point : Each element in the jacobian is the derivative of a corresponding kinematic equation with respect to one of the variables.

Consult Example 2.19 and below....

$$
\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]=\left[\begin{array}{c}
C_{1}\left(C_{234} a_{4}+C_{23} a_{3}+C_{2} a_{2}\right) \\
S_{1}\left(C_{234} a_{4}+C_{23} a_{3}+C_{2} a_{2}\right) \\
S_{234} a_{4}+S_{23} a_{3}+S_{2} a_{2} \\
1
\end{array}\right]
$$

The last column of the forward kinematic equation of the robot

The first row of the J acobian

$$
\left\{\begin{array}{l}
\frac{\partial p_{x}}{\partial \theta_{1}}=J_{11}=-S_{1}\left(C_{234} a_{4}+C_{23} a_{3}+C_{2} a_{2}\right) \\
\frac{\partial p_{x}}{\partial \theta_{2}}=J_{12}=C_{1}\left(-S_{233} a_{4}-S_{23} a_{3}-S_{2} a_{2}\right) \\
\frac{\partial p_{x}}{\partial \theta_{3}}=J_{13}=C_{1}\left(-S_{234} a_{4}-S_{23} a_{3}\right) \\
\frac{\partial p_{x}}{\partial \theta_{4}}=J_{14}=C_{1}\left(-S_{234} a_{4}\right) \\
\frac{\partial p_{x}}{\partial \theta_{5}}=J_{15}=0 \\
\frac{\partial p_{x}}{\partial \theta_{6}}=J_{16}=0
\end{array}\right.
$$

3.8 CALCULATION OF THE JACOBIAN

- The velocity equation relative to the last frame

$$
\left[{ }^{T_{6}} D\right]=\left[{ }^{T_{6}} J\right]\left[D_{\theta}\right]
$$

- The differential motion relationship of Equation

$$
\left[\begin{array}{l}
T_{6} d_{\chi} \\
{ }^{T_{6}} d_{y} \\
{ }^{T_{6}} d_{z} \\
{ }^{T_{6}} \delta_{x} \\
{ }^{T_{6}} \delta_{y} \\
{ }^{T_{6}} \delta_{z}
\end{array}\right]=\left[\begin{array}{ll}
T_{6} J_{11} T_{6} J_{12} & \mathrm{~L}^{T_{6}} J_{16} \\
T_{6} J_{21} T_{6} J_{22} & \mathrm{~L}^{T_{6}} J_{26} \\
T_{6} J_{31} \cdot & \mathrm{~L}^{T_{6}} J_{36} \\
T_{6} J_{41} \cdot & \mathrm{~L}^{T_{6}} J_{46} \\
T_{6} J_{51} \cdot & \mathrm{~L}{ }^{T_{6}} J_{56} \\
T_{6} J_{61} \cdot & \mathrm{~L}{ }^{T_{6}} J_{66}
\end{array}\right]\left[\begin{array}{c}
d \theta_{1} \\
d \theta_{2} \\
d \theta_{3} \\
d \theta_{4} \\
d \theta_{5} \\
d \theta_{6}
\end{array}\right]
$$

R.P Paul은 I 번째 관절이 회전관절일 경우 다음의 관계식을 유도

$$
\begin{aligned}
& { }^{T_{6}} J_{1 i}=\left(-n_{x} p_{y}+n_{y} p_{x}\right),{ }^{T_{6}} J_{2 i}=\left(-o_{x} p_{y}+o_{y} p_{x}\right),{ }^{T_{6}} J_{3 i}=\left(-a_{x} p_{y}+a_{y} p_{x}\right) \\
& { }^{T_{6}} J_{4 i}=n_{z},{ }^{T_{6}} J_{5 i}=o_{z},{ }^{T_{6}} J_{6 i}=a_{z}
\end{aligned}
$$

3.9 HOW TO RELATE THE JACOBI AN AND THE DI FFERENTIAL OPERATOR

- The differential motions of the robot's joints are ultimately related to the hand frame of the robot.
Mathed 1 . Equ. 3.10 and J acobian calculate [D] matrix
- [D] contains differential motions of the hand, $d x, d y, d z, \delta x, \delta y, \delta z$.
- Equ. 3.15 used to calculate $d T$

Methed a

- Equ. 3.24 and J acobian calculate $\left[{ }^{T_{6}} D\right.$] matrix
- [D] contains differential motions of the hand, ${ }^{T_{\sigma}} d x,{ }^{T_{\sigma}} d y,{ }^{T_{\sigma}} d z,{ }^{T_{\sigma}} \delta x,{ }^{T_{\sigma}} \delta y,{ }^{T_{\sigma}} \delta z$.
- Equ. 3.19 used to calculate $d T$

3.10 INVERSE J ACOBI AN

- Inverse J acobian used to calculate the differential motions needed at the joints of the robot for a desired hand differential motion.
- Inverse J acobian calculates how fast each joint must move so that the robot's hand will yield a desired differential motion or velocity.
- To make sure the robot follows a desired path, the joint velocities must be calculated continuously in order to ensure that the robot's hand maintains a desired velocity.

$$
\begin{gathered}
{[D]=[J]\left[D_{\theta}\right]} \\
{\left[J^{-1}\right][D]=\left[J^{-1}\right][J]\left[D_{\theta}\right] \rightarrow\left[D_{\theta}\right]=\left[J^{-1}\right][D]} \\
{\left[{ }^{T_{6}} J^{-1}\right]\left[{ }^{T_{6}} D\right]=\left[{ }^{T_{6}} J^{-1}\right]\left[\left[^{T_{6}} J\right]\left[D_{\theta}\right] \rightarrow D_{\theta}=\left[{ }^{T_{6}} J^{-1}\right]\left[{ }^{T_{6}} D\right]\right.}
\end{gathered}
$$

