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ABSTRACT

Sliding controllers have recently been shown to feature excellent
robuasness and performance properties for specific classes of nonlinear

tracking problems. This paper examines the potential use of sliding
surfaces for observer design. A particular observer structure including
switching terme is thown to have promising properties in the presence
of modelling errors and sensor noise.

Basic concepts on implicit dynamics using sliding surfaces are
introduced in Section 2. Section 3 applies the development to the
design of sliding observers for nonlinear systems in 'companion form',
i.e. of the form

:tn) = f

where f is a nonlinear, uncertain function of the system state
x=Ir,t...,:(f-l1)T In Section 4, the methodology is extended to

general observable nonlinear systems. Section 5 discusses

observability requirements and their relationship to slidinig observers.

Concluding remarks are offered in Section 6.

1. INTRODUCTION

The notion of a sliding surface (Filippov, 1980) has been

investigated mostly in the Soviet literature (see Utkin, 1977 for a

review), where it has been used to stabilize a class of non-linear
systems. Although it theoretically features excellent robustness
properties in the face of parametric uncertainty, classical sliding mode
control presents several important drawbacks that severely limit its

practical applicability. In particular, it involves large control
authority and control chattering. Chattering is in general highly
undesirable in practice (with a few exceptions, such as the control of

electric motors using pulse width modulation), since it implies
extremely high control activity, and further may excite high-
frequency dynamics neglected im the course of modeling, such as
resonant structural modes, neglected actuator time-delays, or

sampling effects. These problems can be remedied by replacing the

chattering control by a smooth control interpolation in a boundary
layer neighboring a time-varying sliding surface (Slotine and Sastry,
19W3) and monitoring the boundary layer width so as not to excite

the high-frequency unmodeled dynamics (Slotine, 1984).

In this paper, we consider the dual problem of designing state

observers using sliding surfaces. We show that, as can be expected,
sliding observers potentially offer advantages similar to those of

sliding controllers, in particular inherent robustness to parametric
uncertainty and easy application to important classes of nonlinear
systems. Further , contrary to the case of controller design,
chattering issues in sliding observer design are only linked to

numerical implementation rather than 'hard' mechanical limitations.

lOn leave from Escols Politeenica da UniversidLde de Sio Paulo
Meebuical Eng.) and supported by Coordenadoria de Aperfeicoamento d
de Nivel Superior - CAPES.

2. BASIC CONCEPTS

3.1 SldIng Surface

Let us rfit briefly summarize the basic idea of a sliding mode,
linked to the potential advantages of using discontinous (switching)
control laws. Consider the dynamic system:

=(n)(t) f(x;t) + bx;t)u(t) + d(t) (1)

where u(t) is scalar control input, x is the scalar output of interest,
and x=[x,t,x .*x(u-1)T is the state. In equation (1) the function
f(x;t) (in general nonlinear) is not exactly known, but the extent of the

imprecision 1Jff on f(;t) ise upper bounded by a known continuous
function of X and t', similarly control gain b(x;t) is not exactly known,
but is of known sign, and is bounded by known, continuous functions
of x and t. Both f(x;t) and b(x;t) are assumed to be continuous in x

The disturbance d(t) is unknown but bounded in absolute value by a

known continuous function of time. The control problem is to get the

state x to track a specific state x=x,t,x .* 4tin-1) IT in the
presence of model imprecision on f(x;t) and b(x;t), and of disturbances
d(t). For this to be achievable from time t = 0 using a finite
control u, we must assume:

xil o = 0 (2)

where i:= x - x4 = I4,-X . ,(n-i)T I is the tracking error vector;
this assumption shall be further discussed later. We define a

time-varying sliding surface S(t) in the state-space Rn as a(x;t) = 0

with
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d -+
J(X;t) := - + X X , x > 0 (3)

where X is a positive constant. Given initial condition (2), the
problem of tracking xi_x is equivalent to that of remaining on the

surface S(t) for alt t > 0 - indeed a _ 0 represents a linear

differential equation whose unique solution is i_ 0, given initial
conditions (2). Now a sufficient condition for such positive invariance
of S(t) is to choose the control law u of (1) such that outside of S(t)

l d
__ (x;t) < -nlal (4)

where q is a positive constant. Inequality (4) constrains trajectories
to point towards the surface S(t) (Figure 1), and is referred to as the
sliding condition.

The idea behind equations (3, 4) is to pick-up a well-behaved
function of the tracking error, s, according to (3), and then select the
feedback control law u in (1) such that s2 remains a Liapunov
function of the closed-loop system despite the presence of model
imprecision and of disturbancet. Further, satisfying (3) guarantees
that if condition (2) is not exactly verified, i.e. if x te is actually off

xdlt.0, the surface S(t) will none the less be reached in a rtmite time
inferior to s(x(O);O) /q, whde definition (3) then guarantees that

xi -. 0 as t -c. Control laws that satisfy (4), however, have to be
discontinuous across the sliding surface, thus leading in practice to
control chattering.

The obvious problem in similarly exploiting sliding behavior in
the design of observers, rather than controllers, is precisely that the
full state is not available for measurement, and thus that a sliding
surface definition analog to (3) is not adequate. Some intuition can be
developed for addressing this diffculty by considering simple second-
order dynamics.

2.2 ShewaLug Effect and Slidlng Patches

Let us consider the generation of sliding behavior in a second-
order system through input switching according to the value of a
single component of the state, rather than a linear combination of
both components, as in (3). The system

Figure 1: The sliding condition

ilmX 22

2 = - k2agnfx1)
where k2 is a positive constant and sgn is the sign function, clearly
exhibits no sliding behavior (Figure 2). Instead, let us consider the
system

4i = - k1sgn(x1)

I2 - k2sgn(xz)
where k1 and ½ are positive constants. The corresponding phase.
plane trajectories are illustrated in Figure 3, which can be constructed
from Figure 2 by shifting the trajectories on the right half-plane
upwards, by the quantity k1, and similarly shifting the left half-plane
trajectories by -k1. This shearing effect generates sliding, behavior in
the region

IX21 < k( 15)
which we shall refer to as the sliding patch.

Let us detail the analysis. The condition

d- (19, <0O
is satisfied if condition (5) holds, which defmes the sliding patch. The
dynamics on the sliding patch itself can be derived from Filippov's
solution concept (Filippov, 1960), wbich formalizes engineering
intuition: the dynamics on the patch can only be a convex
combination (i.e., an average) of the dynamics on each side of the
discontinuity surface

it = 'v(z2 + kl) + (1 - 4Xz2- kl)
42 = 7 k1 + (1 - -)(- k1)

The value of 'y , and therefore the resulting dynamics, are then
formally determined by the invariance of the patch itself:

i=0 => i2 =-(k2/k1) x2
Thus, z2 exponentially decreases to 0 after reaching the sliding patch,
with a time-constant k1/k2. Further, one can easily show that all
trajectories starting on the 2 axis reach the patch in a time smaller
than 1z2(t=0)t1(k1k2) . Actually, sliding can be guaranteed from time
t=O by making kI and k2 time-varying, with

X2

X ._z~~~~~~~~l

Ftgue 2: Second order system ui/thaingle input uwitching
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k2/ki > a

kI > IX20=0-)1e-.t
where a = a(t) is any positive function of time

2.3 System Damping

Consider now the system

-4= -: + £2- k1egn(xd)
2 = -a2:X - k2sgn(xz)

Repeating the previous analysis the sliding condition is verified in the
extended region

X2C k + a1z1 if X1 >O

£2 -kl + a1:x if xI <O
as ilustrated in Figure 4. Thus, the addition of the damping term in
a1 increases the region of direct attraction. Further, the value of a2
only affects the capture phase but not the dynamics on the patch
itself, which remains unchanged:

£2 = - 1k2/k1) £2

3. IMPLICIT REDUCED-ORDER OBSERVERS FOR
NONLINEAR SYSTEMS IN COMPANION FORM

3.1 Systems with a Single Measurement

Let us now consider the system

Li =J
where f is a nonlinear, uncertain function of the state
x = [1,X£2 = x49", and let us exploit the preceding development to

design an observer for this system, based on the measurement of xl
alone. From the previous dicussion, we use an observer structure of
the form

1 =-a1i1 + L2 - kIgn(i1)
(6)

£2 = C-a211 + f - k28gn(i,)
where i1 =l - XI£ and the constants a, are chosen as in a

Luenberger observer (which would correspond to k= 0, k= 0) so
as to place the poles of the linearized system at desired locations -it.

The quantity f in (6) is the estimated value of f. The value of
df =f-f depends both on the modelling effort and of the
computational complexity allowable in the observer itself. In this
paper, we assume that dynamic uncertainty If is explicitely
bounded. Known nonlinear terms may also, for simplicity, be treated
as bounded error (using known bounds on the actual system state)
and included in Af. The effect of df is compensated by exploiting
this knowledge of its (generally time-varying) bound, as we shall later
illustrate.

The resulting error dynamics can be written:

£1X=-I A1 + 2- k8gn(i1)
£2 =-a 2t + if - k2sgn(i1)

The methodology can be directly extended to nth-order systems
in companion form:

lZ2

-4; J i xI
$2

Ftgure 3: Shearing effect

-k

Figure 4: Effect of damping on reachabiity

ZI(n)= I

where x£ is the single measurement available. The observer structure
is then of the form

A-a1i1 + i2 - k1gn(i)
£2 = t 2:1 + 3- k28sn(1,)

= -anZiI +f - k.gnp(i)
The n-I poles associated to the implicit dynamics on the patch are
defined by

det(pIn-1 -

- ( az + k2/k1)

- ( OL3 + k>Ik ) O

)=0 (7)

1
_ ( % + takh/k) 0
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Thus, the poles on the patch can be placed arbitrarily by proper
selection of the ratio (kl/kl) , =i= 2)...in). A posible choice is to
defie ka the desired precision in i2, let

k5 . 1Jd1
and in a constant ratio with k,, and finally defime the remaining poles
k, 1-= 2,...,n-11 so that the implicit dynamics associated with the
patch be critically damped, i.e., have all poks real and equal to a
positive constant X. One can then easily show that trajectories
starting on the i1 axis and in the slding patch remain in the patch,
and verity

i2(')l <5 (2X)' k, i=O.., n-2

from whkh the precision on i can be derived.

A revealing remark can be made at this point on the relationship
between the dynamics of the Luenberger part (defied by the

Sj, = 1...,n)) and the implicit dynamics on the sliding patch
(defmed by the ratios (ks/k,), [i = 2,...,n)) by considering the linear
transformation

i = Mi
which makes damping explicit and puts the error dynamics in the
form

z1 -ji + i2 - k,sgn(ij)
2 -2j2 + 4 k2sni23,)

3.2 Effect. of Measurement Noise

Consider again a second order system with a single measurement,
now corrupted by noise v=$r(t)

X =--al(i1 + v) + i2 - k,egn(i, + v)
(8)

X2= -2('I + v) + f- k2agn(i1 + v)
Although the presence of the terms in -agn(i, + v) makes an exact
stochastic analysis fairly involved, useful insight can be obtained by
using appropriate simplifying approximations.

Assume, first, that v is a deterministic C' signal of bounded
spectrum:

< w < w_ or w > w => F,(w)=O

where F, is the Fourier transform of v. Sliding behavior, if any, can
then only occur on the surface

il + V = 0

Repeating the analysis of Section 2.2, the sliding region is then
defined by

1'2 + fl < kl
and the equivalent dynamics are given by

iS = -V

2 + (k2/kl) i2 = - (k2/kl) u + 4/

(9)

Z= -sni,, + If - k'5agn(i,)
with

kd =Mht

Indeed, assume that the desired Luenberger poles C, are such that

and assume further that the impliit dynamics on the patch is

required to be critically damped at the same break-frequency .

X :=

Then one can easily verify that the required kW would simply be

kW2 =°0 , 3 0 , , kn 5 0

In other words, in -pace, switching would only occur in the
computation of i1 (although corresponding s-space switching would

occur on all components), thus seeming to lead to rather
uninteresting behavior. The importance of this observation can be

fuly understood only by a close examination of the observer's

properties in the presence of measurement noise, which shall be
discussed in the next section. Let us just remark for now that there is

no reason for the implicit bandwidth on the patch to be identical to
the bandwidth of the Luenberger part; in particular, reducing k,
increases the bandwidth on the patch, yet may potential reduce

sensitivity to measurement noise by reducing the amplitude of the
discontinuity in 4. It is this unusual nonlinear effect that we must

try and exploit to make sliding observers superior to Luenberger
observers or extended Kalman fiters under certain noise conditions,
as we now discuss.

Two limiting cases deserve particular attention:

a) w <<« (k2/k,) . We then have, if f - 0

we 4 -_ << (k2/kl) vm
In particular, the estimate of x2 is exact if the measurement error in

xi is constant.

b) w_ >> (k2/k1). We then have, if f = 0

i2 g 0

However, the bound on k2/k, also implies that the observer's
robustness to model uncertainty is directly limited by the value of
w_ . The corresponding precision in i2 is then

ki21 . r F / w_
where r w 3 is the desired ratio between w_ and (k2/k,), and F is the
available (in general time-varying) bound on 14f It is obtained by
choosing ki and k2 according to

k,.2ij + rF/w_
k2= k,wl/r

so as to satisfy (9) while maintaining k2 larger or equal to F.

The above discussion implies that, as could be expected, the
system cannot remain in a pure sliding mode in the presence of
arbitrary measurement noise. Instead, assuming that the

measurement noise is bounded by some constant v., the system wiXl
remain in a vicinity of the axis of width to. The major potential
advantage of the proposed sliding observer, over e.g. an extended
Kalman fiter, is then that the sliding observer can still be made
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considerably more robust to parametric uncertainty. This can be
easiy understood by considering the 'average' error of the observer,
is whose dynamcs can be approximated as

i 2-ai14 + -2d- k1 Average[sgn(i16 + V)J
I

=-a2z1 -k2 Averagejsgn(il + v)f + 4f
where Average[i15 +vJ is computed over 'short' time periods during
which is is treated as a constant. If we assume for simplicity that v(t)
is white noise, then

Averagelsgn(i1 + v)j - Expectationjsgn(i1 + v)J
+00 x1

= fsgn(i1 + v)p(v)dv = 2 fp(v)dv
-00

where the lat equality assumes that probabity density p(v) is
symmetri. Thus, the average value is an odd continuous function of
iz For instance, if v is uniformly distributed on the interval !-Uv4,v
we get

Expectationsgun(i1 + t4J =l-o
so that the average dynamics can be written

I

a62-(a1 + kI/IVO)Ji + X24
(10)

x2a -(a2 + k2/v)i16 + 4/

Thus, the effect of the uwitching terms is to modify the effective
banduidth of the average dynamic. according to the actual level of the
measurement noise. In particular, we recover Fillipov's equivalent
sliding dynamics as the noise level v. tends to zero.
Indeed,

1/vo 0i a> t16-o a> XI& - °

so that

x2s - (a2 + k2/vo)/(a1 + k1/v0)1424 +4f
_ -(k2/kl)i26 + 4/

The above simprified analysis can be used to guide the choice of
the switching gains kj Consider, for instance, the average error

dynamics of a third-order system
a -(aI + kh/v0)i,, + '2a

2a -(02 + k2/vO)i,, + 43,
xas=-(at + k3/VO)i,l + Af

still with uniform bounded white noise of amplitude v.0, and choose
the a; as in a standard Kalman rlter. It is then reasonable to select
the kj so that the average dynamics be critically damped:

a1 + kllvo a3
a2 + k2/ 3X2

as + k/v, a 3

Further, the minimum acceptable value of X is determined by the
condition

which can be written

vo < F/Xs
where F is a constant (or 'slowly' varying, as compared to bandwidth
X) upper bound on 1f. The value of X that yields the smallest h/s is
then

a (F/uv)"'I (11)

which represents a reasonable choice as long as the corresponding kh's
remain positive. The bounds on '2, and '34 can be computed
accordingly. In particular, they can be easily analysed in the
frequency domain: letting p be the Laplace variable, we have

4 = 11 _ (3X2p + X3)/(p -xfl (Af/p2)

3, = 1l - X3/(p +)?1 (a/f/p)
Thus, for the observer to be fuUy effective, X must be larger than the
frequency content of /f, whih, if tuning (11) is used, imposes in
turn an upper bound on the noise level v.. Alternatively, the
condition can be satisfied by increasing X to a value larger than (11),
thus also increasing the k1 and therefore the noise content of the state
estimates.

3.3 Implementatlon speets

The reader may rightfuly be concerned about the handling of the
terms in sgn(i1 + v) in the numercal implementation of the proposed
observer. The problem can be addressed by using a boundary layer
approach similar to that of (Slotine, 1984), i.e., by replacing in the
implementation sgn(i, + V) by satl(4f + v)/01, where sat is the
saturation function. One can then easily show that the results of the
averaging analysis still hold provided that t << v.. For such an
interpolation to be effective, however, one should slghtly 'color' the
measurement noise by prefiltering the measurement of xz, using e.g a

rmt-order rilter of bandwidth much larger than the frequency content
of xI The sampling rate is then cbosen accordingly to be consistent
with the frequency of the prefiltering.

3.4 Systems with Multiple Mesurement

The case of systems in companion form with multiple
measurements is a particular instance of a more general class of
systems, discussed in the next section.

4. EXTENSION TO GENERAL NONLINEAR
OBSERVABLE SYSTEMS

Consider the neh order nonlinear system:

x f(x,t) x E Rn

and, for convenience, consider a vector of measurements that are

linearly related to the state vector:

5=CX sE RP

We defie an observer with the folowing structure:

x - tcx,t) - Ki

whe. x E R", t is our modet of f, K is a nXp gain matr xto be
specified, and 1, is the pX1 vector

1,=jsgn(i1) agn(2) agn(i5) ... agn(9lT
where
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(12) C=11 00... 0I

and el is the corresponding row of the pXn C matrix. We also defme

the following error vectors:

* :- '- C(i X)

9:* A-x

Using equations (8) and (9) we have:

i= A- K1,

where

tf := i(lt,t) - f(x,t)

Af = -443 .iznflt) AX IT
(13)

(14) Expression (22) then yields the reduced order dynamis previously
obtained.

Example 4.2 Non-companion form (single meaurement)

(15) Consider the second order system,

I fi(xI z2)

4' = f2(zxII2)

For convenience we can rewrite (15) as,

i=t , ?=a-K1,

The p dimensional surface, = 0 will be attractive if,

8.4i < 0 , j=1J@..P (17)
Sliding will occur on the surface if in arbitrarily small vicinity oft ,

06i S -'-'d d, i=I..P (18)

Equations (18) defie the aliding region , i.e. the multivariable

extension of the sliding patch defined by (5). During sliding the

system dynamis are effectively reduced from nth order system to a

n-p equivalent or reduced order system

The approximate dynamics on this reduced order manifold can be

formally derived using the so-called 'equivalent control' method

(Utkin,1977), which is equivalent to Filipov's solution concept in the

case of linear input switching . During sliding, the switching term in

(16) is acting to keep s 0, hence, formally,& We cau

express the second condition as,

grad(m).fJOi,)=0 (19)

where

t:= at -K1, (20)

and i is the equivalent switching vector , which can be obtained

from (13), (19) and (20):

C(At-Ki*) = 0

so that

i,= (CK)l1CAf (21)

Thus , the equivalent dynamics on the reduced order manifold is

given by:

i - (I -K(CK)-1C)At

Ci- 0 (22)

Exampl 4.1 Companion form (single measurement)

Clearly the results of section 3.1 are a special case of equations
(10) (without the addition of the linear Luenberger term) with the

dynamics on the patck described by (22), where:

z = xI

Equation (10) can be written

fl(f-(x:,12) ksgn(d1)
2 f2(ZlIX2) - k2gn(i1l)

In order to use equivalent dynamics (22) we identity

C -|1 K k1 k2JT lAft AfjT

where 41, = f - f4 . The sliding condition (17) becomes,

zi(Af, - k1sgn(i1))< 0

Thus A sliding occurs when :-= 0 and IAfj < k1 . Equation (22)
yields the sliding dynamics

= 0

=2 -(k2/kdAf1 + Af2 (23)

The structure of 4f1 and f2 must be known before any further

analysis can be done, as we now discuss .

5. OBSERVABILITY REQUIREMENTS

Consider the system defined by:

x-=(x,t) , xER"

=(x,t) E RP

This system must be observable in order for any observer structure to

be succesfull in reconstructing the state x from the measurement s.

Convenient algebraic observability conditions on t and g are not

nearly so emy to fmd as in the linear case. (Hermann and

Krener,1977) discuss the use of Lie derivatives to develop local

conditions. Intuitively, in order for the system to be observable one

must be able to perform successive differential operations on g(x)
until an implicit inversion can be performed to obtain x .

Consider for instance the second order nonlinear system of

Example 4.2:

s $1-~~~1fl(XI 1 2)
2 f2(Xl,r2)

Z $
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In order for this system to be observable, 14 must be a single valued
function of t2. One can see from equation (23) that 44 must be a

function of 42 in order for the control term -(k2/hk)z11 to have any
influence on the error dynamics

In general, the observability condition is strongly lUnked to
equation (22) through the structure of the 4t vector, and an
unobservable system will result in uncontrollable error dynamics.

6. CONCLUDING REMARKS

But is it Art ? Clearly, this study is only a step in developing a
complete and systematic methodology of sliding observer design for
nonlinear systems, and the reader may not want to throw away his
Kalman filters yet. However, sliding observers have intriguing
properties, and in particular uncommon behavior in the presence of
measurement noise, which should make them worthy of extensive
further research.
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