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Sliding IVIode Control With 
Sliding Perturbation Observer 
This work introduces a new robust motion control algorithm using partial state 
feedback for a class of nonlinear systems in the presence of modelling uncertainties 
and external disturbances. The effects of these uncertainties are combined into a 
single quantity called perturbation. The major contribution of this work comes as 
the development and design of a robust observer for the state and the perturbation 
which is integrated into a Variable Structure Controller (VSC) structure. The pro­
posed observer combines the procedures of Sliding Observers (Slotine et al, 1987) 
with the idea of Perturbation Estimation (Elmali and Olgac, 1992). The result is 
what is called Sliding Perturbation Observer (SPO). The VSC follows the philosophy 
of Sliding Mode Control (SMC) (Slotine and Sastry, 1983). This combination of 
controller/observer gives rise to the new routine called Sliding Mode Control with 
Sliding Perturbation Observer (SMCSPO). The stability analysis shows how the 
algorithm parameters are scheduled in order to assure the sliding modes of both 
controller and observer. A simplified form of the general design procedure is also 
presented in order to ease the practical applications of SMCSPO. Simulations are 
presented for a two-link manipulator to verify the proposed approach. Experimental 
validation of the methodology is also performed on a PUMA 560 robot. A superior 
control performance is obtained over some full state feedback techniques such as 
SMC and Computed Torque Method. 

1 Introduction 

Sliding Mode Control (SMC) is a well-known technique due 
to its outstanding robustness properties against parametric un­
certainties and external disturbances. Conventional SMC imple­
mentation utihzes the upper bound of each uncertainty to assure 
stability (Slotine and Sastry, 1983). This procedure typically 
yields over conservative control gains which limits tracking 
accuracy (Moura et al., 1995). As an improvement (Elmali and 
Olgac, 1992) introduces the concept of perturbation estimation 
in SMC, which results in a procedure called Sliding Mode 
Control with Perturbation Estimation (SMCPE). Perturbation 
vector is defined as the combined effect of all the uncertainties 
and external disturbances, the estimation of which constitutes 
a real time compensation mechanism against uncertainties. The 
accuracy of the estimation is the critical parameter for ro­
bustness in this scheme, as opposed to the upper bounds of the 
perturbations themselves. Consequently, the driving terms of 
the error dynamics are reduced from the uncertainties (as in the 
conventional SMC) to the accuracy in their estimates. The result 
is a much better tracking accuracy without being over conserva­
tive in control. 

SMCPE opens an interesting research avenue: design of per­
turbation observers for SMC. Robust perturbation observers 
should be highly accurate within the frequency range of interest. 
The proper choice of observers can improve the tracking accu­
racy substantially (Jezernik et al., 1994). So far this perspective 
has received little attention in the literature due to the cost of 
the requirements of high quality sensor and full state feedback, 
which are essential to arrive at competitive performance levels. 
Another issue, which remains to be addressed, is the closed-loop 
stability of the sliding controller with perturbation observer. In 
(Elmali and Olgac, 1992), the perturbation estimation proce­
dure is based on simple numerical differentiation of the state 
vector, which has certain limitations in the estimation phase. For 
instance, the applications with noisy velocity feedback requires 
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filtering operations in this procedure, restricting the tracking 
performance. 

Sliding observer (SO) is a high performance state estimator 
well suited for nonlinear uncertain systems (Slotine et al., 1987) 
with partial state feedback. The sliding function of this observer 
is the estimation error of the available output. The basic SO 
structure consists of switching terms added to a conventional 
Luenberger observer (Luenberger, 1965). 

The present work proposes the use of the SO as a tool to 
eliminate the requirement of a full state feedback in the pertur­
bation estimation, reducing the implementation costs. Also, we 
show that the integration of perturbation estimation into the SO 
structure can substantially reduce the driving terms of the state 
observer error dynamics. Consequently, the resulting observer 
is able to provide much better state estimation accuracy. The 
combination of perturbation estimation and SO is named Sliding 
Perturbation Observer (SPO). We show that the further combi­
nation of this SPO and SMC results in a high performance 
algorithm that is robust against perturbations, utilizes only par­
tial state feedback and outperforms conventional SMC with full 
state feedback and perfect measurements. This new algorithm 
is named as Sliding Mode Control with Sliding Perturbation 
Observer (SMCSPO) which forms the highlights of this paper. 
The stability analysis for the combination of the controller and 
the observer is presented for completeness. A systematic design 
procedure is offered taking into account the limitations of the 
control hardware. The approach is presented for general second 
order multi-degree of freedom systems. The extension of this 
procedure to a general order system is under current investiga­
tion. 

The document is prepared as follows. Section 2 presents the 
system model and outlines the concept of perturbation. Section 
3 reviews the SO approach. Sections 4, 5, and 6 are the major 
contributions of this work, where: Section 4 introduces the SPO, 
Sections 5 and 6 present SMCSPO algorithm with a stability 
proof for partial state feedback. Section 6 also presents a design 
procedure. Section 7 compares conventional SMC with 
SMCSPO. Section 8 verifies the proposed approach through 
simulations. Section 9 presents an experimental comparison 
among the SMCSPO, Computed Torque Method (CTM) and 
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conventional SMC (with full state feedback). Section 10 con­
cludes the work. 

2 System Modeling and the Perturbation Concept 
This section presents the system dynamics which is taken 

into account along with the definition of perturbation (Elmali 
and Olgac, 1992). The governing equation for general second 
order dynamics with n-degree-of-freedom (dof) is: 

xj =fj(x) + Afj(x) + I [(bj>(x) + Abj,(x))u<] + dj(t). 

j= h n (1) 

where x A [X, . . .X„]'^ is the state vector and Xj A [xj XjY. 
The terms^(x) and A_^(x) correspond to the nonlinear driving 
terms and their uncertainties. The components bij and Aby repre­
sent the elements of the control gain matrix and their uncertain­
ties, while dj is the external disturbance and uj is the control 
input. The terms fj and bji are known continuous functions of 
the state. 

Perturbation is defined as the combination of all the uncer­
tainties of Eq. (1): 

*Xx, t) = Afj(x) + i [Afoy,(x)M,] + dj(t). (2) 

The control task is to drive the state x towards a desired state 
Xrf 4 [Xi,;. . .X„rf]' despite these perturbations. It is assumed 
that the perturbations are upper bounded by a known continuous 
function of the state (Elmali and Olgac, 1992): 

n 

Fjix, t) = Fj(x) + S \^ji(x)u>\ + Dj(t) > 1^X01 (3) 
1=1 

where F, > | A ^ | , $̂ -,- > |Afoj,| and Dj > \dj\ represent the 
expected upper bounds of the uncertainties. 

3 Sliding Observer for Single Input Single Output 
(SISO) Systems 

A brief review of SO is presented next for a SISO system, 
following (Slotine et al., 1987). SO is a robust observer struc­
ture which estimates the state of a non-linear uncertain system. 
The state space representation of a second order single dof 
system is: 

Xi =^ X2 

X2 = / ( x ) + bu + A / (x ) + Abu + d{t) 

y = x, (4) 

where x = [X[ X\ ] ^ is the state vector and Xx is assumed to be 
the only measurable state. The observer task is to estimate the 
state x despite the uncertainties. The SO structure is presented 
next: 

Xx = X2 — ki sgn (xi) — aiXx 

Xi = f(x) + bu - k^ sgn {Xx) - a2X, (5) 

where k,, fej, ax, a^ are positive numbers and Xx — Xx Xx IS 
the estimation error of the measurable state. Throughout the 
text, " " refers to estimation errors whereas " " symbolizes 
the estimated quantity. Using (4) and (5) the resulting estima­
tion error dynamics are 

Xx ~ X2 — kx Sgn (xx) — axXx 

A = -k2 sgn (xx) - a2Xx - ^ (6) 

where \I/ is defined in (2) and the difference / = / ( x ) - / ( x ) 
is assumed to be part of the uncertainty A / o f expression (2). 
The observer sliding mode takes place on the line .f i = 0 of the 

iX=,^ 

(X\X] /Ci 

(x^Xi +ki 

Fig. 1 Observer state space and sliding mode 

observer state space Xx vs. X2- Figure 1 depicts a typical state 
space trajectory. The conditions for the existence of sliding 
mode are 

X2 ^ kx + axXx (if Xi > 0) 

i j a -kx + axXx (if ;?i < 0). (7) 

Once the sliding takes place (i.e. Xx = 0) the resulting error 
dynamics take the form 

^2 + (k2/ki)X2 = - * . (8) 

Note that (8) is a filter between 9 and X2 with a cut-off fre­
quency at fca/fci • It is desirable to place the break point k2/kx as 
high as possible in order to maximize the attenuation from ^ 
to X2, and consequently improve the estimation accuracy of X2 • 
The choice of ^2/^1 is discussed in Section 6. 

The stability of the SO is guaranteed by setting 2̂ > r ( x , 
t), which assures in steady state | X21 s fci as can be seen from 
(8) implying that the sliding conditions (7) are also verified. 
The expression for 2̂ should be based on $ (not on x). We 
assume that r ( x , /) is also an upper bound of ^ , meaning that 
the uncertainties due to state estimation are negligible compared 
to the modeling uncertainties and external disturbances. This is 
a reasonable assumption since the estimation errors can be re­
duced by increasing fca/fei independently from <!/. Therefore, the 
selection for k2 is made as 

k2 = r ( x , t). (9) 

4 Sliding Perturbation Observer (SPO) 
This section introduces the proposed perturbation observer 

without considering the closed-loop control. In 4,1, a new con­
trol variable is defined in order to decouple the control of Eq. 
(1). This simplifies the formulation as will be described later. 
4.2 presents a simple perturbation observer structure similar to 
Jezernik et al. (1994). Finally, 4.3 shows that the combination 
of perturbation and sliding observers results in a more effective 
observer structure: Sliding Perturbation Observer (SPO). We 
note again that, throughout this section we focus on stabilizing 
the observer dynamics without the presence of a closed loop 
control. 

4.1 Control Variable Transformation. Before integrat­
ing SO into SMC it is convenient to decouple the control vari­
able using the following transformation: 

fj(x) + X bji(x)u! = ayUj (11) 

where a^ is an arbitrary positive number and «; is the new 
control variable. The original control vector of Eq. (1) is easily 
obtained as 
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u = B" ' Col [a-ijUj -fj(x)] (12) 

where u = [MI . . .M,,]'^ and B = [bji(\)]„xi,- The difference 
bji(x) - bji(x) is considered as part of Abji terms of expression 
(2) . 

Transformation (11) allows us to write the system dynamics 
as; 

Xj = ayUj + %. 

The state space representation of (13) is 

i i j = X2J 

Xy = a^jUj + * ; 

yj = Xy 

and the corresponding SO structure is 

Xlj = Xy - ky Sgn (X|;) 

(13) 

Xy ayUj - ky sgn (xy) 

ayXy 

- oiyXij. 

(14) 

(15) 

The conditions for the existence of the observer sliding mode 
and stability are identical to (7) and (9), respectively, for each 
degree of freedom "j". 

4.2 Perturbation Observer. The development of a per­
turbation observer is presented next. Throughout this subsection 
full state feedback is assumed in order to focus on the perturba­
tion estimation aspects of the strategy only. Section 4.3 ad­
dresses the issue of partial state feedback, with no Xy measure­
ments available. 

Let Xy be a new state variable defined as 

Xy = a 3 , % - ^j/oiy (16) 

It is desirable to observe the variable Xy and consequently calcu­
late \P; using this relation instead of estimating it directly, as 
was the case in Elmali and Olgac (1992). In order to accomplish 
this, it is assumed that: 

1. si/j exists (i.e., there are only continuous perturbations) 
and it is bounded. 

2. The spectrum of ^j lies within a known finite frequency 
range kq,. 

Note that assumption 1 does not hold for instants when disconti­
nuities in the perturbation signal occur (e.g., dry friction at zero 
velocity points). Even the conventional SMC strategies with 
actuators of finite bandwidth could not counteract this type of 
perturbation at these instants. Therefore, assumption 1 does not 
introduce an additional constraint to those used commonly for 
SMC (Slotine and Sastry, 1983). 

The time derivative of Eq. (16) gives 

Xy — OlyX2j 
ay 

(17) 

At this point we assume that it is possible to select an asy high 
enough so that the term "t/j/ay can be neglected relative to 
ayXy. Based on this assumption and using (14) and (16), we 
propose the following observer equation for Xy (and \1/,): 

•M-Xy = ay(-Xy + ayXy + Uj) 

*J = ay{-Xy + ayX2j) (18) 

Using Eqs. (14), (17), and (18), the estimation error dynamics 
is obtained as 

Xy = -ayXy + ifjl Uy (19) 

where Xy = xy - Xy is the estimation en-or. Note that we can 
write Xy = -^j/uy so that ^y = -ay^j + * j , which in 
Laplace domain becomes 

CO Tj(CO) 

h H (to^+a ĵ)"' 

CO 

20 dB/dec 

Fig. 2 Magnitude plot of the transfer function of Eq. (20) 

^j(p) 
p + a- np)- (20) 

Throughout this text, " p " represents the Laplace variable. 
Equation (20) is a high pass filter with input "ifj and output 
Vpy, the perturbation estimation error. Figure 2 depicts its fre­
quency magnitude plot. As can be seen, it is desirable to max­
imize the break point ay in order to attenuate the lower fre­
quency contents of the perturbation signal as much as possible. 
This is consistent with the assumptions that generated the ob­
server equations. If ay is placed higher than Xtp then, in steady 
state, the upper bounds of ^j become smaller than those of 'ij. 

4.3 Sliding Perturbation Observer. This section intro­
duces a perturbation observer that utilizes only partial state 
feedback (xy in this treatment). Consequently, it is necessary 
to estimate Xy in order to obtain '^j. We propose a new observer 
structure that combines the SO of (15) with the perturbation 
observer of (18). The result is a better state observer that also 
provides an on-line perturbation estimation scheme using only 
partial state feedback. The idea is to use the perturbation esti­
mate ^y in the SO in order to reduce the driving terms of the 
error dynamics of (8). That is, instead of \&y, $ j = ^^ - \l>y 
becomes the input to (8). Consequently, the estimation accu­
racy of X2J improves at least to the order of the perturbation 
estimation accuracy. This new structure can be achieved by 
writing the observer equations (15) as: 

Xy = Xy - ky Sgn (Xy) - a,y.^,j 

Xy = ayUj - ky SgU (Xy) - ayXy + ^tj 

Xy = alj{-Xy + ayXy + Uj) (21) 

where 

* j = a 3 j ( - % + OlyXy). (22) 

These equations constitute the Sliding Perturbation Observer. 
Note that Eqs. (21) couple the observers for states xy and Xy 
in contrast to the earlier Eqs. (15) and (18) where state Xy was 
considered to be available. The new observer error dynamics 
become 

iy = Xy - ky sgn {Xy) - ayXy 

Xy = -ky sgn {Xy) - ayXy + ^j 

Xy = ay(-Xy + ajj-̂ jj) + ^j/ciy. (23) 

After the observer sliding mode begins, Xy dynamics become 

Xy + {ky/ky)Xy = *y. (24) 

Note that the input of % dynamics is reduced from ^^ (as in 
(8)) to f̂y (in (24)). The transfer function between '^j and *y 
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can be obtained using (16) and the last of Eqs. ( 2 3 ) . After 
simplifications it yields 

^jip) 
P(P + ky/kij) 

,2 , n , n , . . ^ n . n . . . . 2 ( - n P ^ ) ( 2 5 ) p^ + (ky/k,j)p + (k2j/ktj)al 

which is a high pass filter. Naturally the observer parameters 
involved are selected to attenuate the incoming perturbation 
signal within its expected frequency range. Section 6 describes 
this process in detail. 

The relation between X2, and * ; is obtained from Eqs. (24) 
and (25) as 

XyiP) 
p^ + (k2j/kij)p + {k2jlkij)a\ 

( - * ; ( p ) ) . ( 2 6 ) 

Note that X2j(p) is desired to be small for better state estimation 
for X2j- Hence the parameters k2j/k]j and a^ must be selected to 
maximize the attenuation from perturbation '^j(p) to X2j{p). 

4.4 Effect of Saturation Function. The above analysis 
of observer contains no feedback control scheme so far. Equa­
tions ( 8 ) , ( 2 4 ) , ( 2 5 ) , and (26) are obtained assuming perfect 
observer sliding (i.e., Xij = 0 ) . As it is explained in later sec­
tions, when SPO is integrated into SMC strategy it is necessary 
to smooth the discontinuous sgn (xij) to eliminate the control 
chatter. Saturation functions are used instead, and they are de­
fined as 

sat (xtj) = 
Xij/\xy\, if \xij\ a e„ 

Xij/e„j, if \xij\ s e„ 
(27) 

where e„j is the boundary layer of the SPO. 
Without disturbing the generality, we assume that at time t 

= 0 Xij and X2j are perfectly known so that Xij(O) = 0, X2ji0) 
= 0. That means, the observer starts on the sliding surface and 
always remains in the boundary layer provided that the gain ^2; 
is high enough (as described in Section 3 ) . Thus all the 
sgn (xij) terms of previous equations can be replaced by XijI 
e„j. Since reaching phase is already eliminated, the attractivity 
parameters a i , and a2j are selected to be zero. ^After these 
changes, the frequency domain relation between $y and \I/j is 
modified to 

*,(/,) = 
p[p^ + (kij/e„j)p + k2jU„j\ 

p^ + {kij/e„j)p^ + (k2j/e„j)p + aljky/eoj 
( - * y ( p ) ) 

( 2 8 ) 

which yields 

X2j(p) = 
pip + ky/e„j) 

p^ + (kij/e„j)p^ + (kyUoiSP + aljky/e^j ' 

(29) 

For the sake of comparison the corresponding transfer function 
between X2j and * ; for SO is obtained by subtracting (15) and 
(14) which yields 

Xyip) 
P + k^jl€^ 1/ ''oj 

p + (ky/e„j)p + k2jle„j 
( - * X P ) ) . (30) 

Further comparisons are presented in Section 6 between SO 
and SPO. 

In Sections 3 and 4 above the emphasis has been on stabiliz­
ing the observers. In the following sections (5 and 6) a control 
strategy is appended to these observers and the stability of the 
combined dynamics is proven. 

5 S l id ing M o d e C o n t r o l W i t h S l id ing P e r t u r b a t i o n 

O b s e r v e r ( S M C S P O ) 

This section presents the integration of SMC control law and 
SPO observer scheme. For the system of Eq. ( 1 4 ) , we define 
the estimated sliding function as; 

Sj = ej + Cj^Cj (31) 

where c,i > 0, ê  = i i , - Xuj is the estimated position tracking 
error and [xuij x^j] ^ is the desired motion for the ' 'y '- th ' ' degree 
of freedom. The actual sliding function is 

Sj £j T Cj\ Cj, (32) 

where e, = Xy - X\aj is the actual position tracking error. 
The estimation error of the sliding function is defined as Sj 

= Sj — Sj. Using Eqs. (21) and (23) its value can be computed 
as 

X,j + CjiXij. (33) 

The control Uj is selected to enforce SjSj < 0 outside a pre­
scribed manifold. A desired .s,-dynamics is selected as 

where 

sat (Sj) 

Sj = —Kj sat (Sj) 

Sj/\Sj\, if If, 

Sj/e,j, if If,.I s e,j 

(34) 

(35) 

is used due to its desirable anti-chatter properties (Slotine and 
Sastry, 1983). In this equation, ecj stands for boundary layer of 
the SMC controller, as opposed to the e„j in SPO. 

Using the results of previous sections it is possible to com­
pute Sj as 

Sj = ayllj - [kyltoj + Cji(ktj/e„j) - (kij/e„jy]Xij 

- {k,j/e„j)Xy - X,jd + CjliXy - Xi^j) + * j . (36) 

In order to enforce (34) when Xy = 0, a control law is selected 
as 

«; = — {-Kj sat (Sj) + ikyle„j + Cji(kij/£„j) 

- (ky/eojy]xij + xuj - Cjiixy - xuij) - * j ) (37) 

The resulting f,-dynamics including the effects of X2j, becomes: 

4. = -Kj sat (Sj) - (k,j/e„j)xy. (38) 

From the sliding conditions (7 ) the state estimation error is 
bounded by | ̂ 2,| ^ kij. Therefore, in order to satisfy SjSj < 0 
outside the manifold |5 , | s e^j, the robust control gains must 
be chosen such that 

Kj > kij/toj. (39 ) 

After the approaching phase, selection (39) assures \sj\ < 
ecj. Using Sj = Sj - Sj and Eqs. (23) (with sat (Xy) = Xy/e„y), 
the actual 5}-dynamics within the boundary layer \sj\ < e^.j 
becomes 

. Kj 
Sj + -^Sj = 

ktj Kj 
X\j 

K 
91 + — ]x2j - * , . (40) 

As we can see, the driving terms of i}-dynamics are the estima­
tion errors of the state and perturbations, which are bounded 
provided that the guidelines of Sections 3 and 4 are followed. 

660 / Vol. 119, DECEMBER 1997 Transactions of the ASME 

Downloaded 04 Mar 2009 to 164.125.49.124. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



The details of the selection of the observer and controller param­
eters for a stable closed loop system are discussed next. 

6 Design Procedure 
This section proposes a systematic general design procedure 

considering the hardware limitations of the system. The purpose 
of this study is to provide some guidelines for the case of 
implementing SMCSPO in practical applications. 

Once e„j and \sj\ Cci are reached, i.e. the double 
sliding is in effect, observer and Sj dynamics take the form: 

-k,j/e„j 

0 
kyle.j + (fji - kijlt„j) - {2cj, + ay) a^j 

0" 
0 
0 

X\j 

X2J 

Jj_ 

+ 

[01 
0 
1 
0 

^j/ay, (41) 

where it is assumed that Cj, = Kj/e,:j (same bandwidths for Sj 
and e, dynamics). The selection of the parameters will be such 
that the poles of the system matrix in (41) are placed at desired 
and naturally stable locations. The associated characteristic 
equation is 

+ {ky/e„j)\ + al(ky/t„j)] = 0. (42) 

Let p{\i) = ( \ + Ki)'^ be the desired characteristic polyno­
mial where, for simplicity, all the desired poles are selected to 
be at the same real valued location \ = — X,/ (X.,; > 0). This 
leads to the following design solutions: 

3\rf 

ay = vXrf/3 

(43) 

Ultimately, the transfer functions (28), (29), and (30) turn out 
to be 

^j(p) 
p(p^ + 3K,p + 3X,̂ ) 

XzjiP) = 

(P + Kf 

pip + 3Ki) 

iP + Kif 

(-* ; (P)) , 

i-np))' 

p + 3\ip + 3\,; 

(44) 

(45) 

(46) 

respectively. Figure 3 compares the magnitude plots of (45) 
(SPO) and (46) (SO). In this plot, the magnitudes are normal­
ized with respect to the DC gain of (46) (i.e., l/X,,). SPO 
clearly yields higher attenuation up to approximately u)/\j = 
0.4, meaning better estimation accuracy within this frequency 
range. If 0.4\rf is placed much higher than the perturbation 
spectrum, then SPO is expected to outperform SO at any op­
erating frequency. Note that for ur/Ki > 0.4 the discrepancy is 
minimal between the attenuation of SO and SPO, meaning close 
performance levels at high frequencies. 

0.01 0.1 10 100 

(O/^H 

Fig. 3 Comparison of tlie magnitude plots of Eqs. (45) and (46) normal­
ized by \d 

Physical limitations of the control system define the optimum 
placement of X .̂ Some examples of such hardware constraints 
are: sampling frequency, measurement delay and actuator dy­
namics. Consider r'""" to be the dominant time delay in the 
hardware. This is an a priori known quantity and it can be 
experimentally determined. Once | Xij \ < e^j the observer slid­
ing mode dynamics become x,j + (kij/e„j)xij = X2j (as indicated 
by (41)), which is a filter with input Jca,, output Xij (the observer 
sliding function) and break point k,j/e„j. It is shown in Moura 
et al. (1995) that the break point of the sliding function dynam­
ics inside a manifold cannot exceed l/(5r' '" '). Similar proposi­
tion is also presented in Slotine and Li (1991). Therefore, ac­
cording to the first of Eqs. (43) the best selection of \, is 

\,= 
15T" 

(47) 

This simple entity defines the necessary SPO parameters via 
(43) based on the limitation of the hardware at hand. 

7 SMCSPO Versus Full State Feedback SMC 

This section presents a comparison between SMCSPO with 
partial state feedback versus conventional SMC with full state 
feedback and no measurement noise. The tool for comparison 
is the transfer function that relates Sj and \i/y in each algorithm. 
The higher the attenuation within the perturJDation spectrum, the 
better the performance of the algorithm. 

7.1 Sj(/7)/*/p) for SMCSPO. Using (40), (43) - (45) 
and the sHding property thatxy(p) = X2j{p)/(p + ky/eoj), the 
frequency domain relation between Sj and ^j for SMCSPO is 

Sjip) 
ip' + 5XrfP + IOXg)p 

(p + K,y 
*;(P)- (48) 

7.2 sj(p)/%(p) for SMC With Full State Feedback and 
Perfect Measurements. For the dynamics of Eq. (1) , it is 
shown in Slotine and Sastry (1983) and Elmah and Olgac 
(1992) that conventional SMC, after the approaching phase, 
yields 

(49) 

where Kj s; |\I'^| (upper bound of perturbations) is selected in 
order to assure that |.Vj| < Sj is maintained. The driving terms 
in Eq. (49) are the perturbations, as opposed to the state and 
perturbation estimation errors in Eq. (40). In both cases Kjle^j 
is the break frequency which is set equal to X̂ , for a fair compari­
son with SMCSPO. Kjiccj = \d proposition is also used to 
determine the variable boundary layer t^j- With this substitution, 
Eq. (49) takes the form 
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Figure 4 compares the magnitude plots of Sj(p)/^j(p) for 
SMC and SMCSPO. Both plots are normalized with respect to 
the DC gain of (50). For high frequency contents of '^j, both 
algorithms behave the same. In the mid-frequency range, the 
maximum discrepancy is about 10 dB in favor of SMC. In 
smaller frequencies, however, SMCSPO outperforms SMC up 
to a designer selected frequency \,j, = 0.1 \<,, which can be set 
to a higher value than the most expected frequency components 
of the perturbations. It is important to note that the SMC consid­
ered here needs full state feedback and no measurement noise. 
On the other hand, SMCSPO utilizes only partial state feedback, 
nonetheless SMCSPO still exhibits superior performance. 

We wish to draw the attention to some extra terms like / , = 
^(x) -fj{ii) and bji = bji(x) - bji{x) in the perturbation estima­
tion of SMCSPO. They appear due to the state estimation errors. 
Consequently, the perturbation signal, \l>;, may have large mag­
nitudes which are not desirable. The influence of fj and 5j, on 
Sj, however, can be made negligible. To achieve this one should 
revisit the filter of (48). It is easy to observe that the filter 
attenuation at frequency \i is —20 log \^ + 10 dB. That is, as 
long as kj > 3.2 rad/s, the influence of these estimation error 
terms on Sj is negligible. Another practical observation is that, 
for applications such as motion control of multi-arm articulated 
mechanisms, the matrix B = [ i„(x)] is the inverse of the inertia 
matrix, thus it depends only on joint positions (i.e., angles or 
translations), which makes bji = 0 for this particular application 
when the position feedback is available. 

Figure 5 depicts the closed loop dynamics of SMC and 
SMCSPO in block diagrams. In both cases, the perturbations are 
filtered yielding tracking errors as the output. The perturbation 
estimation attenuates the effects of the perturbation signal. Note 
that SMC strategy cannot eliminate DC offsets in the perturba­
tion signal, as opposed to SMCSPO which yields infinite attenu­
ation at zero frequency. Therefore, if the uncertainties contain 

^ J - A f j + ^ b j i U i - h d j 
i=l 1 

P + ^d 

Sj 1 

P + ^d 

ej 

< 

Fig. 5(a) Block diagram of SMC strategy 

(p + ^ a ) ' 

ptS>.jp+IOX'j 

(p + >-d)(p'+3».dP + 3>.d) P + *-d 

some constant offset (e.g. gravity or dry friction) then SMCSPO 
will remove its influence completely on the tracking error, 
which is not possible with SMC routine. Strategies such as 
Integral Sliding Mode [Cho et al., 1993 ] are developed to elimi­
nate this bias requiring a modification in the sliding function. 

8 Simulations 
This section presents simulation results using a two-link 

SCARA type manipulator in order to verify Eqs. (45) and (48). 
Performance evaluation and experimental comparisons with 
other techniques are left to the next section. The actual manipu­
lator model is taken as (Moura et al., 1995): 

Ml - bJx + wj/i/jz sin {Q2)(Q\ + hxQ-i) 

U2 - b^2^2 - ma/i/gi sin (6^2)6'? 
(51) 

where I = 
In 

l21 

I12 

I22 
is the inertia matrix, /ii /? + 

g2 + Inizhlgi cos (^2), /12 = /" + 'W2/j2 

Fig. 5(b) SMCSPO strategy 

m2l2lg2 cos (62) = /21, /22 = I2 + m^lli, Uj = control torque; 
b„j = viscous friction coefficients (j = 1, 2) ; Ij = joint 7 
moment of inertia with respect to its center of mass (7 = 1,2). 
In this model, the links are taken as slender rods with mass 
concentrated at the mid-point, yielding Ij = mjlj/\2. The nu­
merical parameters are: /j = 0.3 m = 21gi; h = 0.3 m = 21^2; 
nil = 5.0 Kg; /Wj = 5.0 Kg; ^„, = b,2 = 5.5 Ns. 

In this simulation, the perturbations are assumed to entail 
friction forces, coriolis and centrifugal acceleration terms. The 
control task consists of tracking 9^^ = (TT/ IS) sin (-Kt/l) rad 
and 624 = (7r/18) cos (wt/l) rad. The state vector is chosen 

as [0,^1^2^21' ' . 
The control loop is closed at 1 KHz sampling rate. It is 

assumed that the sampling period is the dominant time delay of 
the closed-loop system. The parametric selections for SMCSPO 
algorithm follow the design of Section 6. 

Figure 6 depicts the actual perturbations for the first two 
seconds of the simulation. The dominant frequency is identical 
to that of the desired motion. After the simulations are finished, 
the signals of Fig. 6 are fed through the filter of Eq. (45) and 
the output is compared with the actual velocity estimation er­
rors. This procedure is repeated for each joint. The results are 
depicted in Fig. 7. It is clear that Eq. (45) correctly describes 
the estimation error dynamics. The small discrepancy within 
the first O.I in Fig. 7(a) is due to the filter transients, which 
disappear at steady state. 

Figure 8 depicts the results regarding Eq. (48). Similar to 
Fig. 7, the predicted sliding functions were obtained by feeding 
the actual perturbation signal of Fig. 6 through the filter of Eq. 
(48). The resulting outputs were plotted together with the actual 
sliding functions of the respective joint. Obviously the predic­
tions of Eq. (48) are verified by these plots. Again a small 
discrepancy is noticed in Fig. 8(a) due to the filter transients. 
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9 Experimental Results 
This section presents experimental results of SMCSPO algo­

rithm. The controlled system is a PUMA 560 robotic manipula­
tor (Yoshikawa, 1990) of which the first 3 links are considered 
only. For comparison purposes, two full state feedback algo­
rithms are also tested: conventional SMC and Computed Torque 
Method (CTM) (Yoshikawa, 1990). The algorithms are imple-

0.5 1 

Time (sec) 

Fig. 8(8) Joint 1 

1.5 

Fig. 

0 0,5 1 1.5 2 

Time (sec) 

Fig. 8(b) Joint 2 

8 Actual and predicted sliding functions from Eq. (40) 

Fig. 9 Simplified model of the manipulator used by the algorithms 

mented on a 80486/50 MHz CPU. The source code is written 
in C. DC motors (with 0.264 Nm/amp) provide the joint actua­
tion. The gear ratios for joints 1, 2 and 3 are 62.6, 107.8 and 
53.7, respectively. Digital encoders with 5000 counts/rev are 
utilized for joint angle measurements, tachometers generate the 
joint velocity signals (7 Volts/1000 RPM with 5 percent ripple) 
for SMC and CTM. 

The simplified manipulator model used by all those algo­
rithms is 

0 = Bu (52) 

where u is the vector of the control torques, B = I ' and I is 
the inertia matrix. This matrix is obtained modeling the three 
links as slender rods with the center of mass located at their 
mid points, as shown in Fig. 9. Equation (52) ignores viscous 
and coulomb friction, coriolis terms, external loads, payloads 
and an accurate description of the mass distribution of the links. 
All of these uncertainties are included in the perturbation vector. 
The components of the inertia matrix I = [/;,], {i,} = 1, 2, 3) 
are computed as: 

/ i /,, + vmill + 0.251J cos^ (62)) + hi sin^ {62) 

+ Iy2 cos^ (6*2) + m^ik cos (02) + h cos (6*2 + di)/2y 

+ 7,3 sin'(6i2 + Oi) + 7,3 cos"(02 + 19,) 

722 = m2/2/4 -I- 7̂ 2 -I- m^Ul + hh cos (6^) + ll/4)/2 + 1,3 

733 = 7,3 + m3ll/4 

7,2 = 72, = /„{m3[/2 sin (6I2) + h sin (62 + e,)l2V2 

- mth sin (^2)/2) 

7i3 = 73, = m3/,;/3 sin {62 + ^3)/2 

723 = 732 = m3[/i/4 -I- hh cos (6»3)/2] + 7,3 

where 7„, = w,/^/12 is the moment of inertia of link i about 
axis a which goes through the center of gravity of the link. S,, 
62, and Qi are the joint angles taken relative to the previous 
link. The corresponding numerical values of the manipulator 
parameters are: wi, = 12.95 Kg, m2 = 22.36 Kg, m^ = 5.0 Kg, 
/, = 0.673 m, I2 = 0.432 m, h = 0.434 m and l^ = 0.08 m. 

SMC control law uses (for details see Slotine and Sastry, 
1983 and Elmali and Olgac, 1992): 

u = I [ - K sat (s) - ce + 6,1] (53) 

where K = diag [Kj] {Kj > 0) , sat {s) = [sat ( .v,) . . . sat 
(s„)V, c = diag [Cjt], e = [e^ .. . e„f and O,, = 
[dui.,. 6,„i]'^ is the desired motion vector. In order to assure 
I sj I 2S £cj in steady state the control gains must be selected as 
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Table 1 Parameter selections of all strategies—j = 1, 2 

Algorithm Parameters 

SMCSPO 

SMC 
CTM 

ko\j/£oij =150 rad/s; KijIK^j = 50 rad/s; 
ay = V50/3 rad/s; Kjk.j = 50 rad/s; 
Cj = 50 rad/s 

^/c; = Cj = 50 rad/s 
/f̂  = 2500 sec-^ Kvj = 100 s~' ^pj W; 

/C, > |* ; | according to Eq. (3). The control (53) yields the 
i'^-dynamics of Eq. (49). 

The CTM utilizes the following control law (Yoshikawa, 
1990): 

u = I[^d - KpC - K,e] (54) 

where Kp = diag [K^j], K, = diag [K^j] are the proportional 
and derivative gain matrices, respectively. 

The parameters of SMC and CTM are selected such that the 
resulting tracking error dynamics possess the same desired poles 
as in SMCSPO (i.e., X.̂ ). This makes it possible to have a fair 
performance comparison between all the presented algorithms. 
For SMC, the tracking error dynamics is obtained using Eq. 
(50). The final result gives; 

, / - ' ^ " ^ j ^ Joint 2 , / < ~ \ • 

, / , \ Joint 1 ' f ' \ 

ti^^^Tti^iI^ 
! , Joints 

Fig. 11 Computed Torque Method. Position tracking errors and controi 
torques. 

Fig. 12 Siiding Mode Control. Position tracking errors and control tor­
ques. 

^AP) = 
1 

(p + Oi)(p + Ki) 
%(P)- (55) 

Therefore our selection is c, 
loop dynamics yield: 

ejiP) •• 

•n \,. For the CTM the closed-

p ' + K,jp + K, 
*y(p). (56) 

Therefore, the gains are selected as K^j = 2\d and Kpj = kl so 
that the characteristic polynomial has all the roots at ~ \i. The 
selections for SMCSPO are given in (43). 

The experiments are carried out on the PUMA 560 robot for 
the following desired trajectory: 

ejj = 0.34[1 - cos {irt/2)] rad ; = 1, 2, 3 (57) 

The upper bounds of the perturbations are calculated based 
on the PUMA 560 dynamic model proposed by Armstrong et 
al. (1986). The perturbations consist of coriolis and centrifugal 
terms, gravity effect, viscous and Coulomb friction forces and 
uncertainties in the inertia matrix. For our experimental setup 
the following assumptions are made: | Afcj,| s 0.5|iij,| (j, i = 
1, 2, 3), the viscous friction coefficients in all the joints are 
less than 40 Nms, the Coulomb friction coefficients are all less 
than 3 Nm and the applied control torques do not exceed 50 
Nm for the desired motion. Using the desired state to compute 
the state dependent terms and the worst case scenario for uncer­
tainties, the perturbation upper bounds can be computed from 
Eq. (3)_ using: J$j,(e,)«, | = |0.5/j,,(e„)(50)|, Dj{bj,) = 
3 sign (Ojd) + 40(9;,, + gjid^), where gj is the gravity effect and 
the term Fj(9j, 9,,) (from (3)) represents the coriolis and cen­
trifugal terms of the PUMA 560 as described in details in Arm­
strong et al. (1986). The resulting expected perturbation upper 
bounds are plotted in Fig. 10. Based on these results, 500 rad/ 
s^, 1000 rad/s^ and 2000 rad/s^ are selected as the robust gains 
of SMC and SPO for joints 1, 2, and 3, respectively. 

In the experimental setup utilized, the control sampling speed 
(600 Hz) and the actuator time constants ( = 1 m s) are the 
major causes of time delay in the control loop. The former is 
clearly the dominant. In order to prevent this hardware imposed 
bound to be an influential point in our comparisons, we set K^ 
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13 SMCSPO—position tracking errors and control torques 

= 50 rad/sec (=8 Hz) for all the control strategies. Table 1 
depicts these parameters selections. 

The position traclsing errors for CTM, SMC, and SMCSPO 
are depicted in Figs. 11(a), 12(a), and 13(a), respectively. 
The results of CTM and SMC are almost identical. The reason 
for this is the fact that the control laws (53) and (54) become 
identical when the sliding regime is obtained (for the selected 
closed loop poles). SMCSPO is able to provide a superior 
performance over CTM and SMC. The peak errors in SMCSPO 
occur whenever the velocity sign changes. At these instants. 
Coulomb friction becomes discontinuous and ^j terms get very 
large. Therefore it is expected a poor estimation performance 
of the SPO. The overall tracking accuracy of SMCSPO is at 
least one order of magnitude better than the other two algo­
rithms. Note the presence of a DC offset in all the plots of CTM 
and SMC, but not in SMCSPO. This bias is due to the gravity 
effect which appears in all the joints through the dynamic cou-
pHng. Also, the signals depicted in Figs. 11(a) and 12(a) con­
tain significant presence of the desired motion frequency, which 
reflects the spectrum of the perturbations. On the other hand, 
SMCSPO strategy is able to filter the influence of the perturba­
tions much more effectively, as predicted by the theory. The 
control torques are depicted in Figs. II(b), 12(b), and 13(b). 
Note that SMCSPO is able to achieve better performance with 
less control activity. The reason for that is the presence of noise 
(5 percent ripple) in the velocity feedback which appears in 

both SMC and CTM. SMCSPO utilizes only position feedback 
which is performed by digital encoders and thus almost error 
free. 

10 Conclusions 
This work introduces a new robust tracking control algorithm 

named Sliding Mode Control with Sliding Perturbation Ob­
server for a general class of second order nonlinear systems. The 
consolidation of the SPO into the SMC routine demonstrates 
significant performance improvement over the full state feed­
back form of the SMC. The proposed observer also proves 
to be superior than conventional sliding observers due to the 
perturbation estimation feature. The stability analysis shows that 
as long as the observer stability is guaranteed, the controller 
can be also made stable. A detailed design procedure for a 
systematic formulation of the new routine is presented utilizing 
frequency domain techniques. Verification of the analytical 
proposition is presented via simulation examples. The perfor­
mance of SMCSPO is shown to be limited by the dominant 
time constant of the control process. Experiments on a 3 axis 
PUMA 560 manipulator confirms the superior performance of 
SMCSPO over two well known motion control techniques, the 
conventional SMC and CTM. Further research will include: a 
better design of the perturbation estimator in order to expand 
the frequency range where SMCSPO outperforms SMC; and 
to identify engineering applications where SMCSPO can offer 
substantial improvement over state of the art techniques. 
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