Screw Theory

\#3

The Screw Theory

1. Screw Theory?

- The representation of the movement of the rigid body
\checkmark For intuitiveness and calculation speed, we need a different method more than the conventional method based on cartesian space (x, y, z)
\checkmark Unlike the conventional transfer matrix-based method, the screw theory represents the movement of the rigid body
- The screw theory can be classified as :
\checkmark Finite screw (Screw)
\checkmark Instantaneous screw (Twist)

The Quaternion

2. Quaternion?

- The number made of scalar and vector which made of an imaginary numbers
- $\boldsymbol{h}=h_{1}+h_{2} i+h_{3} j+h_{4} k=(\operatorname{Re}(h), \operatorname{Im}(h))$
$\checkmark h$: Quaternion, $\operatorname{Re}(h)$: Real number, $\operatorname{Im}(h)$: Imaginary numbers
\checkmark Summation, subtraction, and conjugate act same as conventional realimaginary number
- Multiplicity acts like this :

Quaternion multiplication table				
1	1	i	j	k
1	1	i	j	k
i	i	-1	k	$-j$
j	j	$-k$	-1	i
k	k	j	$-i$	-1

$$
\left.\begin{array}{l}
\boldsymbol{h}^{\text {mult }}=\left[\begin{array}{cccc}
h_{0} & -h_{1} & -h_{2} & -h_{3} \\
h_{1} & h_{0} & -h_{3} & h_{2} \\
h_{2} & h_{3} & h_{0} & -h_{1} \\
h_{3} & -h_{2} & h_{1} & h_{0}
\end{array}\right] \\
\boldsymbol{h}=\left[h_{0} h_{1} h_{2}\right. \\
h_{3}
\end{array}\right]^{T} \quad \begin{aligned}
& \boldsymbol{h}_{1} \boldsymbol{h}_{2}=\boldsymbol{h}_{1}^{\text {mult }} \boldsymbol{h}_{2}
\end{aligned}
$$

The Quaternion - can the transfer matrix be replaced?

- Quaternion
- $h=h_{1}+h_{2} i+h_{3} j+h_{4} k=(\operatorname{Re}(h), \operatorname{Im}(h))$
$\checkmark h$: Quaternion, $\operatorname{Re}(h)$: Real number,
$\checkmark \operatorname{Im}(h)$: Imaginary numbers
- How to rotate?
$\checkmark \boldsymbol{h}=\boldsymbol{r} \boldsymbol{h} \boldsymbol{r}^{*}$
$>r^{*}$ is conjugate quaternion
$\checkmark r=\cos \left(\frac{\phi}{2}\right)+\sin \left(\frac{\phi}{2}\right) n$
$>\phi$ is rotation angle
$>n$ is rotation axis vector
$>$ (form of imaginary vector)
\checkmark WHY $\frac{\phi}{2}$ not just ϕ ?
$>$ Check the video (The real part increases)

The number in middle of video is real part

The Quaternion - can the transfer matrix be replaced?

- Quaternion
- $h=h_{1}+h_{2} i+h_{3} j+h_{4} k=(\operatorname{Re}(h), \operatorname{Im}(h))$
$\checkmark h$: Quaternion, $\operatorname{Re}(h)$: Real number,
$\checkmark \operatorname{Im}(h)$: Imaginary numbers
- This video moves h to \hat{h}
$\checkmark h=0+2 i+0 j+0 k$
$h=0+0 i+2 j+0 k$
by $n=[1,1,1]$
\checkmark First trajectory shows

$$
>\boldsymbol{h}_{1}^{\prime}=r \boldsymbol{h}, \text { where } r\left(\phi=\left[0, \frac{2 \pi}{3}\right]\right)
$$

\checkmark Second trajectory shows

$$
>\dot{\boldsymbol{h}}_{2}=\dot{\boldsymbol{h}}_{1} \boldsymbol{r}^{*} \text {, where } \boldsymbol{r}\left(\boldsymbol{\phi}=\left[\mathbf{0}, \frac{2 \pi}{3}\right]\right)
$$

\checkmark Last trajectory shows

$$
>\hat{\boldsymbol{h}}=\boldsymbol{r} \boldsymbol{h} \boldsymbol{r}^{*}
$$

where $\boldsymbol{r}\left(\boldsymbol{\phi}=\left[0, \frac{2 \pi}{3}\right]\right), \boldsymbol{r}^{*}\left(\boldsymbol{\phi}=\left[\mathbf{0}, \frac{2 \pi}{3}\right]\right)$

The number in middle of video is real part

So we need to use quarternion?

Representing successive rotation using quaternion....

$$
\dot{h}=\cdots r_{3} r_{2} r_{1} \boldsymbol{h} r_{1}^{*} r_{2}^{*} r_{3}^{*} \cdots
$$

This makes the calculation complex, furthermore the position term is absent

By using screw theory, the calculation can be simple, including the motion of position.

The Quaternion to the finite screw

- Quaternion
- $\boldsymbol{h}=\cos \left(\frac{\theta}{2}\right)+\sin \left(\frac{\theta}{2}\right) \boldsymbol{s}_{\boldsymbol{f}}$
$\checkmark \boldsymbol{h}$: Quaternion,
- L_{f} : Rotation axis (Lie group finite motion), but with Plücker Coordinates $\checkmark L_{f}=\left(s_{f}^{T}\left(r_{f} \times s_{f}\right)^{T}\right) \ll$ which we want to use/express/calculate
- Quaternion to the Dual Quaternion
- D $=\boldsymbol{\operatorname { c o s }}\left(\frac{\breve{\theta}}{2}\right)+\boldsymbol{\operatorname { s i n }}\left(\frac{\breve{\theta}}{2}\right) \breve{S}$
$\checkmark \check{\theta}=(\theta+\varepsilon t)$
$\checkmark \breve{\boldsymbol{S}}=\left(\boldsymbol{s}_{\boldsymbol{f}}+\varepsilon\left(\boldsymbol{r}_{\boldsymbol{f}} \times \boldsymbol{s}_{\boldsymbol{f}}\right)\right)$
$\checkmark \varepsilon$: dual number $\left(\varepsilon^{2}=0\right)$
$(\theta, t) \in \mathbb{R},\left(s_{f}, r_{f}\right) \in \mathbb{R}^{3 \times 1}$

The Quaternion to the finite screw

- Quaternion to the Dual Quaternion
- $D=\boldsymbol{\operatorname { c o s }}\left(\frac{\breve{\theta}}{2}\right)+\boldsymbol{\operatorname { s i n }}\left(\frac{\mathscr{\theta}}{2}\right) \check{S}$

$$
\begin{aligned}
& \checkmark \check{\theta}=(\theta+\varepsilon t) \\
& \checkmark \check{\boldsymbol{S}}=\left(\boldsymbol{s}_{\boldsymbol{f}}+\varepsilon\left(\boldsymbol{r}_{\boldsymbol{f}} \times \boldsymbol{s}_{\boldsymbol{f}}\right)\right)
\end{aligned}
$$

$\checkmark \varepsilon$: dual number $\left(\varepsilon^{2}=0\right)$

- $\boldsymbol{D}=\cos \left(\frac{\theta+\varepsilon t}{2}\right)+\sin \left(\frac{\theta+\varepsilon t}{2}\right)\left(\boldsymbol{s}_{\boldsymbol{f}}+\varepsilon\left(\boldsymbol{r}_{\boldsymbol{f}} \times \boldsymbol{s}_{\boldsymbol{f}}\right)\right)$
$\checkmark \cos \left(\frac{\theta+\varepsilon t}{2}\right)=\cos \left(\frac{\theta}{2}\right)-\varepsilon \frac{t}{2} \sin \left(\frac{\theta}{2}\right)$
$\checkmark \sin \left(\frac{\theta+\varepsilon t}{2}\right)=\sin \left(\frac{\theta}{2}\right)+\varepsilon \frac{t}{2} \cos \left(\frac{\theta}{2}\right)$

- $\boldsymbol{D}=\cos \left(\frac{\theta}{2}\right)-\varepsilon \frac{t}{2} \sin \left(\frac{\theta}{2}\right)+\left(\sin \left(\frac{\theta}{2}\right)+\varepsilon \frac{t}{2} \cos \left(\frac{\theta}{2}\right)\right)\left(\boldsymbol{s}_{\boldsymbol{f}}+\varepsilon\left(\boldsymbol{r}_{\boldsymbol{f}} \times \boldsymbol{s}_{\boldsymbol{f}}\right)\right)$
$=\left(\cos \left(\frac{\theta}{2}\right)-\varepsilon \frac{t}{2} \sin \left(\frac{\theta}{2}\right)\right)+\left(\sin \left(\frac{\theta}{2}\right) \boldsymbol{s}_{\boldsymbol{f}}+\varepsilon\left(\sin \left(\frac{\theta}{2}\right)\left(\boldsymbol{r}_{\boldsymbol{f}} \times \boldsymbol{s}_{\boldsymbol{f}}\right)+\frac{t}{2} \cos \left(\frac{\theta}{2}\right) \boldsymbol{s}_{\boldsymbol{f}}\right)\right)$
$=D_{s}+\boldsymbol{D}_{\boldsymbol{v}}$

The Quaternion to the finite screw

- Dual Quaternion to the Finite Screw
- $\boldsymbol{D}=\cos \left(\frac{\theta}{2}\right)-\varepsilon \frac{t}{2} \sin \left(\frac{\theta}{2}\right)+\left(\sin \left(\frac{\theta}{2}\right)+\varepsilon \frac{t}{2} \cos \left(\frac{\theta}{2}\right)\right)\left(\boldsymbol{s}_{\boldsymbol{f}}+\varepsilon\left(\boldsymbol{r}_{\boldsymbol{f}} \times \boldsymbol{s}_{\boldsymbol{f}}\right)\right)$
$=\left(\cos \left(\frac{\theta}{2}\right)-\varepsilon \frac{t}{2} \sin \left(\frac{\theta}{2}\right)\right)+\left(\sin \left(\frac{\theta}{2}\right) \boldsymbol{s}_{\boldsymbol{f}}+\varepsilon\left(\sin \left(\frac{\theta}{2}\right)\left(\boldsymbol{r}_{\boldsymbol{f}} \times \boldsymbol{s}_{\boldsymbol{f}}\right)+\frac{t}{2} \cos \left(\frac{\theta}{2}\right) \boldsymbol{s}_{\boldsymbol{f}}\right)\right)$ $=D_{s}+\boldsymbol{D}_{v}$
- $\widehat{\boldsymbol{D}_{v}}=\frac{\left[\begin{array}{c}\sin \left(\frac{\theta}{2}\right) s_{f} \\ \left.\sin \left(\frac{\theta}{2}\right)\left(r_{f} \times s_{f}\right)+\frac{t}{2} \cos \left(\frac{\theta}{2}\right) s_{f}\right)\end{array}\right]}{\frac{\cos \left(\frac{\theta}{2}\right)}{2}}$
$=2 \tan \left(\frac{\theta}{2}\right)\left[\begin{array}{c}\boldsymbol{s}_{\boldsymbol{f}} \\ \left.\left(\boldsymbol{r}_{\boldsymbol{f}} \times \boldsymbol{s}_{\boldsymbol{f}}\right)+\frac{t}{2} \cos \left(\frac{\theta}{2}\right) \boldsymbol{s}_{\boldsymbol{f}}\right)\end{array}\right]+t\left[\begin{array}{c}\mathbf{0} \\ \boldsymbol{s}_{\boldsymbol{f}}\end{array}\right]$

....This becomes the Finite Screw
- Finite screw $\boldsymbol{S}_{\boldsymbol{f}}=2 \tan \left(\frac{\theta}{2}\right)\left[\begin{array}{c}\boldsymbol{s}_{\boldsymbol{f}} \\ \left.\left(\boldsymbol{r}_{\boldsymbol{f}} \times \boldsymbol{s}_{\boldsymbol{f}}\right)+\frac{t}{2} \cos \left(\frac{\theta}{2}\right) \boldsymbol{s}_{\boldsymbol{f}}\right)\end{array}\right]+t\left[\begin{array}{c}\mathbf{0} \\ \boldsymbol{s}_{\boldsymbol{f}}\end{array}\right]$
... So, where is the D_{s} ?
D_{s} is still in somewhere, waiting for when calculate the successive finite screw

Finite screw and Instantaneous screw

- Screw Theory represents the shift of posture from initial, contrast to DH parameter.
- Can be categorized to the Finite and the Instantaneous screw.

1. Finite screw : $S_{f}=S_{f}(\theta, t, \boldsymbol{s}, \boldsymbol{r})=2 \tan (\theta / 2)[\boldsymbol{s}, \boldsymbol{r} \times \boldsymbol{s}]^{T}+t\left[\mathbf{0}_{1 \times 3}, \boldsymbol{s}\right]^{T}$

- Represents the shift of the posture.

$$
\begin{aligned}
& s=s_{f}, \\
& r=r_{f}
\end{aligned}
$$

2. Instantaneous screw : $S_{i}=S_{i}(\omega, v, \boldsymbol{s}, \boldsymbol{r})=\omega[\boldsymbol{s}, \boldsymbol{r} \times \boldsymbol{s}]^{T}+v\left[\mathbf{0}_{1 \times 3}, \boldsymbol{s}\right]^{T}$

- Assuming r and s doesn't change.
- Represents the movement of posture.
- $\omega=\dot{\theta}$
- $v=\dot{t}$

3. Relationship between the finite and instantaneous screw

- $\dot{S}_{f}=\dot{S}_{f}(\dot{\theta}, \dot{t}, \dot{s}=0, \dot{r}=0)$

$$
=\dot{\theta} /(\sec (\theta / 2))^{2}[\boldsymbol{s}, \boldsymbol{r} \times \boldsymbol{s}]^{T}+\dot{t}\left[\mathbf{0}_{1 \times 3}, \boldsymbol{s}\right]^{T}
$$

- if $\boldsymbol{\theta}=\mathbf{0}$
- $\dot{S}_{f}=S_{i}$

Relationship between finite screw and transfer matrix (tip)

Finite screw : $S_{f}=S_{f}(\theta, t r, \boldsymbol{s}, \boldsymbol{r})=2 \tan (\theta / 2)[\boldsymbol{s}, \boldsymbol{r} \times \boldsymbol{s}]^{T}+t\left[\mathbf{0}_{1 \times 3}, \boldsymbol{s}\right]^{T}$
Transfer matrix : $\left[\begin{array}{ll}\boldsymbol{R} & \boldsymbol{t} \\ \mathbf{0} & 1\end{array}\right]$

- $\boldsymbol{R}=\boldsymbol{E}_{3}+\sin (\theta) \tilde{\boldsymbol{s}}+(1-\cos (\theta))(\tilde{\boldsymbol{s}})^{2}$
\checkmark Rodrigues rotation formula
- $\boldsymbol{t}=\left(\boldsymbol{E}_{3}-\boldsymbol{R}\right)\left(r-\boldsymbol{s}^{T} \boldsymbol{r} \boldsymbol{s}\right)+t \boldsymbol{s}$

Characteristic features of Instantaneous Screw

Instantaneous Screw : $S_{i}=S_{i}(\omega, v, \boldsymbol{s}, \boldsymbol{r})=\omega[\boldsymbol{s}, \boldsymbol{r} \times \boldsymbol{s}]^{T}+v\left[\mathbf{0}_{1 \times 3}, \boldsymbol{s}\right]^{T}$

- Assuming r and s doesn't change.
- Represents the movement of posture.

Mostly used for representing movement of rigid body, which generated by successive active axes

Because it has LINEAR PROPERTY, additivity can be applied.

