Jaehyung Kim

Measurement & Control Lab

Screw Theory

#3

The Screw Theory

1. Screw Theory?

- The representation of the movement of the rigid body
 - ✓ For intuitiveness and calculation speed, we need a different method more than the conventional method based on cartesian space (x, y, z)
 - ✓ Unlike the conventional transfer matrix-based method, the screw theory represents the movement of the rigid body
- The screw theory can be classified as :
 - ✓ Finite screw (Screw)
 - ✓ Instantaneous screw (Twist)

The Quaternion

2. Quaternion?

- The number made of scalar and vector which made of an imaginary numbers
- $h = h_1 + h_2 i + h_3 j + h_4 k = (Re(h), Im(h))$
 - $\checkmark h$: Quaternion, Re(h): Real number, Im(h): Imaginary numbers
 - ✓ Summation, subtraction, and conjugate act same as conventional realimaginary number
- Multiplicity acts like this :

$$\boldsymbol{h}^{mult} = \begin{bmatrix} h_0 & -h_1 & -h_2 & -h_3 \\ h_1 & h_0 & -h_3 & h_2 \\ h_2 & h_3 & h_0 & -h_1 \\ h_3 & -h_2 & h_1 & h_0 \end{bmatrix}$$
$$\boldsymbol{h} = \begin{bmatrix} h_0 & h_1 & h_2 & h_3 \end{bmatrix}^T$$
$$\boldsymbol{h}_1 \boldsymbol{h}_2 = \boldsymbol{h}_1^{mult} \boldsymbol{h}_2$$

The Quaternion – can the transfer matrix be replaced?

- Quaternion
 - h = h₁ + h₂i + h₃j + h₄k = (Re(h), Im(h))
 ✓ h: Quaternion, Re(h): Real number,
 ✓ Im(h): Imaginary numbers
 - How to rotate? $\checkmark \hat{h} = rhr^*$

 $\succ r^*$ is conjugate quaternion

$$\checkmark r = \cos\left(\frac{\phi}{2}\right) + \sin\left(\frac{\phi}{2}\right)n$$

$$\Rightarrow \phi \text{ is rotation angle}$$

$$\Rightarrow n \text{ is rotation axis vector}$$

➢ (form of imaginary vector)

✓ WHY
$$\frac{\phi}{2}$$
 not just ϕ ?
➤ Check the video (The real part increases)

The number in middle of video is real part

The Quaternion – can the transfer matrix be replaced?

Measurement & Control Lab

- Quaternion
 - $h = h_1 + h_2 i + h_3 j + h_4 k = (Re(h), Im(h))$ ✓ h: Quaternion, Re(h): Real number, ✓ Im(h): Imaginary numbers This video moves h to h $\checkmark h = 0 + 2i + 0j + 0k$ $\hat{h} = 0 + 0i + 2j + 0k$ by n = [1, 1, 1]✓ First trajectory shows $\blacktriangleright \hat{h_1} = rh$, where $r(\phi = [0, \frac{2\pi}{2}])$ ✓ Second trajectory shows $\blacktriangleright \hat{h_2} = \hat{h_1}r^* \text{ , where } r(\phi = \left[0, \frac{2\pi}{2}\right])$ ✓ Last trajectory shows \succ $\hat{h} = rhr^*$ where $r\left(\phi = \left[0, \frac{2\pi}{3}\right]\right)$, $r^*\left(\phi = \left[0, \frac{2\pi}{3}\right]\right)$

The number in middle of video is real part

So we need to use quarternion?

Measurement & Control Lab

Representing successive rotation using quaternion....

$$\acute{h} = \cdots r_3 r_2 r_1 h r_1^* r_2^* r_3^* \cdots$$

This makes the calculation complex, furthermore the position term is absent

By using screw theory, the calculation can be simple, including the motion of position.

The Quaternion to the finite screw

Measurement & Control Lab

• Quaternion

•
$$\boldsymbol{h} = \cos\left(\frac{\theta}{2}\right) + \sin\left(\frac{\theta}{2}\right)\boldsymbol{s_f}$$

 $\checkmark \boldsymbol{h}$: Quaternion,

- L_f : Rotation axis (Lie group finite motion), but with Plücker Coordinates $\checkmark L_f = (s_f^T (r_f \times s_f)^T) <<$ which we want to use/express/calculate
- Quaternion to the Dual Quaternion

•
$$D = cos\left(\frac{\check{\theta}}{2}\right) + sin\left(\frac{\check{\theta}}{2}\right)\check{S}$$

 $\checkmark\check{\theta} = (\theta + \varepsilon t)$
 $\checkmark\check{S} = (s_f + \varepsilon(r_f \times s_f))$
 $\checkmark\varepsilon$: dual number $(\varepsilon^2 = 0)$
 $(\theta, t) \in \mathbb{R}, (s_f, r_f) \in \mathbb{R}^{3 \times 1}$

The Quaternion to the finite screw

The Quaternion to the finite screw

• Finite screw
$$S_f = 2\tan\left(\frac{\theta}{2}\right) \begin{bmatrix} s_f \\ (r_f \times s_f) + \frac{t}{2}\cos\left(\frac{\theta}{2}\right)s_f \end{bmatrix} + t\begin{bmatrix} 0 \\ s_f \end{bmatrix}$$

... So, where is the D_s ? D_s is still in somewhere, waiting for when calculate the successive finite screw

Finite screw and Instantaneous screw

- Screw Theory represents the **shift of posture** from initial, contrast to DH parameter.
 - Can be categorized to the **Finite** and the **Instantaneous screw**.
- 1. Finite screw : $S_f = S_f(\theta, t, s, r) = 2 \tan (\theta/2) [s, r \times s]^T + t [\mathbf{0}_{1 \times 3}, s]^T$
 - Represents the **shift** of the posture.
- 2. Instantaneous screw : $S_i = S_i(\omega, \nu, s, r) = \omega[s, r \times s]^T + \nu[\mathbf{0}_{1 \times 3}, s]^T$
 - Assuming r and s doesn't change.
 - Represents the movement of posture.
 - $\omega = \dot{\theta}$
 - $\boldsymbol{v} = \dot{t}$
- 3. Relationship between the finite and instantaneous screw
 - $\dot{S}_f = \dot{S}_f (\dot{\theta}, \dot{t}, \dot{s} = 0, \dot{r} = 0)$ = $\dot{\theta} / (\sec(\theta/2))^2 [\mathbf{s}, \mathbf{r} \times \mathbf{s}]^T + \dot{t} [\mathbf{0}_{1 \times 3}, \mathbf{s}]^T$
 - if θ = 0
 - $\dot{S}_f = S_i$

Relationship between finite screw and transfer matrix (tip)

Finite screw : $S_f = S_f(\theta, tr, s, r) = 2 \tan(\theta/2) [s, r \times s]^T + t [\mathbf{0}_{1 \times 3}, s]^T$

Transfer matrix : $\begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix}$

•
$$R = E_3 + \sin(\theta) \tilde{s} + (1 - \cos(\theta))(\tilde{s})^2$$

 \checkmark Rodrigues rotation formula
• $t = (E_2 - R)(r - s^T r s) + ts$

Measurement & Control Lab

Characteristic features of Instantaneous Screw

Measurement & Control Lab

Instantaneous Screw : $S_i = S_i(\omega, v, s, r) = \omega[s, r \times s]^T + v[\mathbf{0}_{1 \times 3}, s]^T$

- **Assuming** r and s doesn't change.
- Represents the movement of posture.

Mostly used for representing **movement of rigid body**, which **generated by successive active axes**

Because it has LINEAR PROPERTY, additivity can be applied.

